-
Title: Example of Basis Isomorphism
-
Series: Abstract Linear Algebra
-
Chapter: General vector spaces
-
YouTube-Title: Abstract Linear Algebra 6 | Example of Basis Isomorphism
-
Bright video: https://youtu.be/xawP1WXokzM
-
Dark video: https://youtu.be/W2dXg_P8_gY
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: ala06_sub_eng.srt missing
-
Timestamps
00:00 Introduction
00:33 Span in the function space
01:27 Is this a basis?
02:03 Checking for linear independence
05:40 Reformulating as matrix-vector multiplication
06:52 Uniquely solvable?
08:52 Basis isomorphism
11:16 Credits
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Let $V$ be the real vector space of functions $f: \mathbb{R} \rightarrow \mathbb{R}$. Are $\cos$ and $\sin$ linearly independent?
A1: Yes!
A2: No!
A3: Only for $x = 0$.
Q2: Let $V$ be the real vector space of functions $f: \mathbb{R} \rightarrow \mathbb{R}$ and $U$ the subspace spanned by the two vectors $\cos$ and $\sin$. For $\mathcal{B} = (\cos, \sin)$ let $\Phi_{\mathbb{B}}$ be the corresponding basis isomorphism. What is $\Phi_{\mathbb{B}}( 3 \sin + 7 \cos)$?
A1: $\begin{pmatrix} 7 \ 3 \end{pmatrix}$
A2: $\begin{pmatrix} 3 \ 7 \end{pmatrix}$
A3: $\begin{pmatrix} 7 \ 3 \ 0 \end{pmatrix}$
A4: $\begin{pmatrix} 0 \ 3 \ 7 \end{pmatrix}$
-
Last update: 2024-10