-
Title: Basis, Linear Independence, Generating Sets
-
Series: Abstract Linear Algebra
-
Chapter: General vector spaces
-
YouTube-Title: Abstract Linear Algebra 4 | Basis, Linear Independence, Generating Sets
-
Bright video: https://youtu.be/D69BiRT2UDI
-
Dark video: https://youtu.be/7H5526tVkk8
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: ala04_sub_eng.srt missing
-
Timestamps
00:00 Introduction
00:36 Definition of polynomial spaces
02:27 Definition: linear combination
03:38 Definition: span of a subspace
04:44 Definition: generating set for a subspace
05:29 Definition: linear independent sets
06:36 Definition: basis of a subspace
07:57 Definition: dimension of a subspace
09:18 Examples for polynomial spaces
11:25 Example for infinite-dimensional vector space
11:44 Example for matrices
12:42 Credits
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Let $V = \mathcal{P}(\mathbb{R})$ be the real vector space consisting of polynomials. What is a linear combination of vectors of $V$?
A1: $x^2 + 5 x^7 - \frac{1}{10} x^{2023}$
A2: $\sum_{j=1}^\infty x^j$
A3: $7 x^2 - \sin(x)$
A4: $x^3 - 6 \frac{1}{x}$
Q2: Let $V = \mathcal{P}(\mathbb{R})$ be the real vector space consisting of polynomials. What is the span of the set $M$ given by the polynomials $x^2$ and $x^3$?
A1: $\mathrm{Span}(M) = { \alpha x^2 + \beta x^3 \mid \alpha, \beta \in \mathbb{R} }$
A2: $\mathrm{Span}(M) = { 0 }$
A3: $\mathrm{Span}(M) = { x^2 , x^3 }$
A4: $\mathrm{Span}(M) = { x^2 + x^3 }$
Q3: Let $V = \mathcal{P}(\mathbb{R})$ be the real vector space consisting of polynomials. What is the dimension of the subspace $ { \alpha x + \beta x^2 + \gamma x \mid \alpha, \beta, \gamma }$?
A1: 2
A2: 3
A3: 1
A4: 0
-
Last update: 2024-11