

Unbounded Operators - Part 6

Closed Graph Theorem:
$$X,Y$$
 Banach spaces, $T:X\supseteq \mathbb{D}(T)\longrightarrow Y$ operator with $\mathbb{D}(T)$ closed (e.g. $\mathbb{D}(T)=X$).

Then: \top closed \Longrightarrow \top continuous (bounded)

Proof: Assume: $\mathbb{D}(T) = X$.

(
$$\Leftarrow$$
) Choose $(X_n) \subseteq \mathbb{D}(T)$ with $X_n \to X \in X$ and $T \times_n \to Y \in Y$

$$\xrightarrow{T \text{ continuous}} \lim_{n \to \infty} T(X_n) = T(\lim_{n \to \infty} X_n) = T \times$$

$$\implies$$
 $x \in D(T)$ and $Tx = y \implies T$ closed

$$(\Longrightarrow) \quad \text{Assume } \top \text{ is closed } \Longrightarrow \quad G_{+} \text{ is closed in } X \times Y \Longrightarrow \left(G_{+}, \|\cdot\|_{X \times Y} \right) \quad \text{Space}$$

$$f_{X}:G_{T} \longrightarrow X$$

$$(x,y) \mapsto x$$

Define operators: $P_X:G_T\to X$ and $P_Y:G_T\to Y$ linear + bounded $(x,y)\mapsto x$ bijective!

 $\xrightarrow{}$ $P_{X}^{-1}: X \longrightarrow G_{T}$ is continuous (bounded operator) $X \mapsto (X, T_X)$

$$X \xrightarrow{T} Y$$

$$P_{X}$$

$$G_{T}$$

$$T = P_{Y} P_{X}^{-1}$$
 composition of continuous maps

continuous (bounded)