

Unbounded Operators - Part 6

Closed Graph Theorem: X,Y Banach spaces ,
$$T: X \supseteq D(T) \longrightarrow Y$$
 operator with $D(T)$ closed (e.g. $D(T) = X$).

Then: T closed \Longrightarrow T continuous (bounded)

<u>Proof:</u> Assume: $\mathbb{D}(T) = X$.

$$(\Leftarrow) \ \ \text{Choose} \ (X_n) \subseteq \mathbb{D}(T) \ \ \text{with} \ \ X_n \to X \in X \ \ \text{and} \ \ T X_n \to Y \in Y$$

$$\implies$$
 $x \in \mathcal{D}(T)$ and $Tx = y \implies T$ closed

$$(\Longrightarrow) \quad \text{Assume } \top \text{ is closed } \Longrightarrow \quad G_{+} \text{ is closed in } \times \times Y \Longrightarrow \left(G_{+}, \|\cdot\|_{X*Y} \right) \quad \text{Space}$$

$$f_{X}:G_{T} \longrightarrow X$$

$$(x,y) \mapsto x$$
bijective:

Define operators:
$$P_X:G_T\to X$$
 and $P_Y:G_T\to Y$ linear + bounded

Bounded

Towered

Inverse Theorem

Functional Analysis \xrightarrow{P} \xrightarrow{P} \xrightarrow{P} \xrightarrow{P} is continuous (bounded operator) $X \mapsto (X, TX)$

$$T = P_Y P_X^{-1}$$
 composition of continuous maps

continuous (bounded)