

Unbounded Operators - Part 8

For bounded operators:
$$T: X \to Y \longrightarrow T^*: Y \to X$$
 adjoint $\langle y, Tx \rangle_Y = \langle T^*y, x \rangle_X$

$$T: X \to Y \longrightarrow T': Y' \to X' \text{ adjoint}$$

$$T: X \to Y \longrightarrow T': Y' \to X' \text{ adjoint}$$
Banach spaces $T'(y')(x) = y'(Tx)$
for $y' \in Y'$, $x \in X$

Proposition: X,Y Banach spaces, $T: X \supseteq D(T) \longrightarrow Y$ densely defined operator $\longrightarrow \overline{D(T)} = X$

Then there is an operator T: $Y' \supseteq D(T') \longrightarrow X'$ with

$$y'(Tx) = T'(y')(x)$$
 for $x \in D(T), y' \in D(T')$.

The domain $\mathbb{D}(\mathsf{T}^1)$ can be chosen maximally.

Proof: Set $\mathbb{D}(T') := \{ y' \in Y' \mid \text{there is } x' \in X' \text{ with } y'(Tx) = x'(x) \text{ for all } x \in \mathbb{D}(T) \}$ and define: T'(y') := x'

Well-defined? Assume there are $X_1', X_2' \in X'$ with $y'(Tx) = X_1'(x)$ for all $x \in \mathbb{D}(T)$ $y'(Tx) = X_2'(x)$

For Hilbert spaces: X,Y Hilbert spaces, $T\colon X\supseteq \mathbb{D}(T)\longrightarrow Y$ densely defined operator $\longrightarrow \overline{\mathbb{D}(T)}=X$

$$\mathbb{D}(T^*) := \left\{ \begin{array}{c|c} y \in Y & \text{there is } \widetilde{x} \in X \text{ with } \langle y, T_X \rangle_Y = \langle \widetilde{x}, x \rangle_X \text{ for all } x \in \mathbb{D}(T) \right\}$$

$$T^*(y) := \widetilde{x}$$