

Unbounded Operators - Part 8

For bounded operators:
$$T: X \longrightarrow Y \longrightarrow T^*: Y \longrightarrow X$$
 adjoint

Hilbert spaces

 $T: X \longrightarrow Y \longrightarrow T': Y' \longrightarrow X'$ adjoint

Banach spaces

 $T'(y')(x) = y'(Tx)$

for $y' \in Y'$, $x \in X$

Proposition:
$$X,Y$$
 Banach spaces, $T: X \supseteq D(T) \longrightarrow Y$ densely defined operator $\longrightarrow \overline{D(T)} = X$

Then there is an operator $T': Y' \supseteq D(T') \longrightarrow X'$ with

$$y'(Tx) = T'(y')(x)$$
 for $x \in D(T)$, $y' \in D(T')$.

The domain D(T') can be chosen maximally.

Proof: set $\mathbb{D}(T') := \{ y' \in Y' \mid \text{there is } x' \in X' \text{ with } y'(Tx) = x'(x) \text{ for all } x \in \mathbb{D}(T) \}$ and define: T'(y') := x'

Well-defined? Assume there are
$$X_1^1$$
, $X_2^1 \in X^1$ with $Y^1(Tx) = X_1^1(x)$ for all $x \in \mathbb{D}(T)$ $Y^1(Tx) = X_2^1(x)$

$$\Rightarrow X_1'(x) = X_2'(x) \quad \text{for all } x \in \mathbb{D}(T)$$

$$\Rightarrow (X_1' - X_2')(x) = 0 \quad \text{for all } x \in \mathbb{D}(T) \quad \Rightarrow \quad (X_1' - X_2')(x) = 0$$

$$\Rightarrow X_1' = X_2'$$

$$\Rightarrow X_1' = X_2'$$

For Hilbert spaces: X,Y Hilbert spaces, $T: X \supseteq D(T) \longrightarrow Y$ densely defined operator $\longrightarrow \overline{D(T)} = X$