

## Unbounded Operators - Part 2

Recall: operator  $T: X \longrightarrow Y$  with  $\mathfrak{D}(T) = \mathfrak{D}$ 

means:  $T: \mathcal{J} \longrightarrow Y$  linear map

Fact: If  $Ker(T) = \{0\}$ , then  $T^{-1}: Y \longrightarrow X$  with  $\mathbb{D}(T^{-1}) = Ran(T)$   $\Rightarrow$  always defined as an operator

Examples: X = Y = C([0,1]) (with supremum norm  $\|\cdot\|_{\infty}$ )

(a) 
$$T: X \longrightarrow Y$$
 with  $\mathbb{D}(T) = C^1([0,1])$ 

 $T_{\times} = x'$ 

unbounded operator



$$\|T\| = \sup_{\|x\|_{\infty}=1} \|Tx\|_{\infty} = \sup_{\|x\|_{\infty}=1} \|x^{1}\|_{\infty} = \infty$$

(b) 
$$S: X \longrightarrow Y$$
 with  $\mathbb{D}(S) = \{x \in C^1([0,1]) \mid x(0) = 0\}$   
 $Sx = x^1$ 

notations:  $S \subseteq T$  the operator T is an <u>extension</u> of S the operator S is a <u>restriction</u> of T

Note: •  $Ker(T) \neq \{0\}$  not injective!

• Ker(5) = 
$$\{0\}$$
 injective!  $\Longrightarrow$   $S^{-1}$  exists

• T is densely defined 
$$\left( \frac{C^1([o,1])^{\|\cdot\|_{\infty}}}{C^1([o,1])^{(o,1]}} \right)$$

• 5 is <u>not</u> densely defined