The Bright Side of Mathematics - https://tbsom.de/s/uo



## Unbounded Operators - Part 2

**Recall:** operator 
$$T: X \rightarrow Y$$
 with  $D(T) = D$   
**means:**  $T: D \rightarrow Y$  linear map  
**Fact:** If  $Ker(T) = \{0\}$ , then  $T^{-1}: Y \rightarrow X$  with  $D(T^{-1}) = Ran(T)$   
 $\Rightarrow$  always defined as an operator  
**Examples:**  $X = Y = C([0,1])$  (with supremum norm  $\|\cdot\|_{\infty}$ )  
(a)  $T: X \rightarrow Y$  with  $D(T) = C^{1}([0,1])$   
 $Tx = x^{1}$   
unbounded operator  
 $\|T\| = \sup_{\|x\|_{\infty} = 1} \|Tx\|_{\infty} = \sup_{\|x\|_{\infty} = 1} \|x^{1}\|_{\infty} = \infty$   
(b)  $S: X \rightarrow Y$  with  $D(S) = \{x \in C^{1}([0,1]) \mid x(0) = 0\}$   
 $Sx = x^{1}$   
notations:  $S \subseteq T$   
the operator T is an extension of S  
the operator S is a restriction of T

Note: • Ker(T) 
$$\neq \{0\}$$
 not injective!

• Ker(S) = 
$$\{0\}$$
 injective:  $\implies S^{-1}$  exists

• T is densely defined 
$$\left( \begin{array}{c} \overline{C^1([0,1])}^{\parallel \cdot \parallel_{\infty}} = C([0,1]) \end{array} \right)$$

• 5 is not densely defined