BECOME A MEMBER

ON STEADY

Note:

The Bright Side of Mathematics

Unbounded Operators - Part 3 operator $T: X \supseteq D(T) \longrightarrow Y$ (<u>linear</u> map between normed spaces) Recall: graph of T: $G_{T} := \{(x, y) \in X \times Y \mid x \in \mathbb{D}(T), Tx = y\}$ $X \times Y$ normed space with $\|(x, y)\|_{x \times Y} := \|x\|_{x} + \|y\|_{y}$ An operator $T: X \supseteq D(T) \longrightarrow Y$ is called a <u>closed</u> operator if Definition: the graph G_{T} is closed (in the normed space $X \times Y$). T closed \iff for each sequence $(X_n) \subseteq D(T)$ with $X_n \xrightarrow{n \to \infty} x \in X$, $Tx_n \longrightarrow y \in Y$, we have: $x \in D(T)$ and Tx = y<u>Proof:</u> G_{T} closed \iff for each sequence $(x_n, T_{x_n}) \subseteq G_{T}$ that is convergent in $X \times Y$ with limit

> $(\mathbf{x}, \mathbf{y}) \in \mathbf{X} \times \mathbf{Y}$ we have: $(X, Y) \in G_{+}$.

 $x \in D(T)$ and Tx = y

Remember: $T: X \rightarrow Y$ with $\mathbb{D}(T) = X$ bounded \Rightarrow closed operator