ON STEADY

The Bright Side of Mathematics

Unbounded Operators - Part 2

Recall: operator
$$T: X \rightarrow Y$$
 with $D(T) = D$
means: $T: D \rightarrow Y$ linear map
Fact: If $Ker(T) = \{0\}$, then $T^{-1}: Y \rightarrow X$ with $D(T^{-1}) = Ran(T)$
 \Rightarrow always defined as an operator
Examples: $X = Y = C([0,1])$ (with supremum norm $\|\cdot\|_{\infty}$)
(a) $T: X \rightarrow Y$ with $D(T) = C^{1}([0,1])$
 $Tx = x^{1}$
unbounded operator
 $\|T\| = \sup_{\|x\|_{\infty}=1} \|Tx\|_{\infty} = \sup_{\|x\|_{\infty}=1} \|x^{1}\|_{\infty} = \infty$
(b) $S: X \rightarrow Y$ with $D(S) = \{x \in C^{1}([0,1]) \mid x(0) = 0\}$
 $Sx = x^{1}$

notations: $S \subseteq T$

The operator T is an extension of S

 \succ the operator ${\mathcal S}$ is a <u>restriction</u> of ${oxdot}$

Note: Ker(T)
$$\neq \{0\}$$
 not injective:
• Ker(S) = $\{0\}$ injective: $\implies S^{-1}$ exists
• T is densely defined $\left(\overline{C^{1}([0,1])}^{\|\cdot\|_{\infty}} = C([0,1])\right)$
• S is not densely defined