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Linear Algebra Real Analysis

N/

Functional Analysis

« vpartial differential equations

. quanfum mechanios: one needs operators K, T with
XP-PX =¢T
Let (X, 1), (Y, I-ly) be normed spaces (same field [F<{R,C})
and D< X subspace.
A linear map | : D) —> Y s called an operator.
Other notations: « T : X2D — Y
T X — Y  uith domain D
' (T,D) o T with D(T) =D

—Illx

Moreover: | s called densely defined if J) =X .

Ran(T) := {TX | xe:D% < Y subspace
Ker(T) : = ixefD | Tx = O’K = x subspace

1 is called bounded if 3C>0 VxeD : “TXHY SC'HX\IX

T is called unbounded if YC>0 TxeD : “TX”Y> C- =l

Recall: [ is bounded <> T s continuous at all points xeD

Therefore:

T is unbounded <> T s not continuous (at no point xeD )
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Unbounded Operators — Part 2

Recall: operator | X —> Y with CD(T):\'D

means: T:D—Y linear map

FacTt: 1f Ker(T) = 5,0} , Thex T_1: Y %X with 'D(T-1> = Ran(T)

L—> always defined as an operator

Examples: X = Y — C([o,ﬂ) (with supremum norm |lIlls)

@ T:X—Y wtn D) = (L)
Tx = x 1 A

unbounded operator ﬂ&

I Tl = sup |Txll. = sup | = o
o1 Ixllo=1

) X —= Y witn D) :ixe C’([OA—.\) | X(0)=0}
Sx = X

notations: ST T
'\‘K the operator | is an extension of §
the operator S is a restriction of |

Note: - Ker(T) # EO} not injective:

Ker(S) = EO} injective! = 5_1 exisTs

1 is densely defined ( CJ(D‘{Q _ C(D:ﬂ)}
e S s not densely defined
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Unbounded Operators — Part 3

Recall:  operator | - X QZD(T) —> Y (linear map between normed spaces)

> subset in XXY " graph of T

N

| /><
oo A T+ Gy o= faeXa | xeDlr) T =y}

XXY normed space with ”(X‘y)”XxY:: ||X||x+ ||y||Y

Definition:  An operator [ @ X Q:D(T) —> Y is called a closed operator if

the graph GT is closed (in the normed space XXY).

Nofte: T closed <:> for each sequence (XO < :_D(T) with
X,—> xeX , Tx, —> yeY,

we have: X€ :DQT) and  [x = Y

Prooft: GT closed <:> for each sequence QKMTX.,)Q GT
et fs comveraert o s | vt Vi

(x 7 e XxY,
we have: (X, }’) € GT .
W_) and Tx :>/

Remember: T : X — Y \ith :DQT\) :X bounded => closed operator
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Unbounded Operators — Part 4

Closed operator: T : X D D(T) —— Y closed

<:> GT:: {(X,Y)EXXY | XC:D(T) / Tx :y} closed

Closable operator: T X ) D(;T) o Y closable

L _/o\osuve of T
<:> GT is the graph of an operator

Proposition: T: XD ‘D(T> ——> Y closable

<:> GT is a graph (vmo’f possible (0,0) , (O,)/) € G_T for )/#0)

& 1 (0y)e G then Y=0. |Go=flneXf [xeD), T =y}

<:> For each (X.,,) < DQT) with  X,=> 0 and Txh_>>/'

we have y:O.

Define | for a closable operator | : X D D(:T) — Y :

:D(T) R {/XG X ‘ HQ(,.) - :DQT) : X, > X and TX, oomvevqen’rg

Tx S \im Tx, operator: (o\osuve of T>

n—> 0o

= T<T
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Unbounded Operators — Part s

For each (X,J < :DQT) with

X,—~> 0 and Txh—>y,

T:-X2 9(:T> ——> Y closable <:>

we have: y= J .

. 1
Example: X — l (|N, @) ’ e, 851 C5 canonical unit vectors
h (001101 OI>

T: X22() — C , D(T) = span {‘fa | je INZ

e >

> N& — >N
J J

”T” = Sup ||T><||C > sup |T€J| = sup J = O unbounded
X, =4 JeN JEN operator!
)
Closable operator? not confinuous at ()

Choose (X,,) < :DQT) with  X,=> 0 and TX, 7> 0.

Choose ¢ >0 and subsequence (th) such that: |TX"u > €
. th k—>ao\ 0
Define: - Txnk >
Then: Tzk = 1 forall keN For eaoh (x,) < D(T)  vith
\\)’ X,=> 0 and Tx,—>Y,
::_> T is not closable we have: y=0.
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Unbounded Operators — Part ¢

Closed Graph Theorem: X,Y Banach spaces | B X QD(T) —> Y  operator

with :D(T) closed (e.g. :D(T) =X>

Then: T closed <:> T continuous (bounded)

Proof: Assume: :D(T) = X.

(<:) Choose (X,) < :DQT) with  X,— XE X and TX,,%YEY

T continuous

= > lim T(x,) = T(limx,) =Tx

h=> 0o

:> X € :DQT) and Tx = Y :> T closed

(::>> Assume | is closed :> GT is closed in XXY :> (GT,”'HXQ Bs??gac(:ah

Define operators: ?X: GT% X and ?Y: Gq—% Y

linear + bounded

(x1y) > x (xiy) =y
Bounded -~
tnverse bijective!
Theorem
Functional Analysis N -1 . .
— Part 27 :> ?X : X — GT is continuous (bounded operator)
% —> (%, Tx)

-1

—l_ N
X_\ 2 Y ‘|— — /l)Y ?X composition
N /ﬂ o

continuous maps

:> T continuous (bounded)
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Unbounded Operators — Part 7

X,Y Banach spaces, 1 X QD(T) —> Y operator

Closed Graph Theorem: _'D(T) :X :>< 1 closed <:> Tboumoled)

Example:  functional T : X —> (E unbounded (see part s)
L> extend: _’D(T) = X
:> T vot closed

Proposition: X,Y Banach spaces, T:X QD(T) —> Y operator,

Then: T closed <:> (:D(T), ||||T> complete
N

\4 graph norm

IxIl_s= Ul + 17l
Proot: J-‘ (:D(T), "”T> —> (éT / “‘”X"Y> } linear
+
bijecTive
X —> (x,Tx) o

10|

oy N0 T, = Il + il = I

:> ‘) is an isometric isomorphism

(:D(T), "”T> complete <:> (éT , ”'”XxY> complete

<:> (GT / “.”X*Y> closed in XxY
<:> T closed
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Unbounded Operators — Part ¢

For bounded operators: [ : X —=> Y  ~> T*; Y — X adjoint

H:\b\evf szaces <)’ I TX>Y — <T*)/ I X>X

T X—=Y ~> 7.V X adioint

T )
Banach spaces T (ys)(x) = y\(TX>

\
‘FOY Y\éY / XE x

Proposition: X,Y Bemael seees, | ¢ K Q:D(T) —> Y densely defined operator
—D(1) = X

) )
Then there is an operator | : Y)QD(T\) —> X with

y\ (Tx> = T)(y’)(x) for xe D(T)) y'e DT

The domain :D(T\) can be chosen maximally,

Proof: set D(T") ‘:{V‘GY\ ‘““e"e s KeX vith Y\(Tx> = X/(x) for 4l ><€:D(T)}

and define: T)(yw) 5l

Well-defined? Assume there are x},xleX} with y\(Tx> = X (x)
y'(Tx) = %00

:> XI(X) = x;(x) for all xe D(T)
=> (X-X)E =0 touxedln) = (4-X)E) =0

continuity

for all xe D(T)

for all Xe X

) )
:> x1:x2 []

For Hilbert spaces: X'Y Hilbert spaces, T:X Q:D(T) —> Y densely defined operator
SDT) = X

:D(T*) p— {/YGY ‘ there is 'XEX with <>/'TX>Y = <’>le>x for all X€:D(T)}

T*(y) i — X



