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Unbounded Operators - Part 1

Linear Algebra Real Analysis

Functional Analysis

Motivation: partial differential equations

quantum mechanics: one needs operators with

Definition: Let                      be normed spaces (same field             )

and subspace.

A linear map is called an operator.

Other notations:

with domain

or with

Moreover: is called densely defined if

Ran( )

Ker( )

subspace

subspace

is called bounded if

is called unbounded if

Recall: is bounded is continuous at all points

Therefore: is unbounded is not continuous (at no point      )



Unbounded Operators - Part 2

Recall: operator                 with

means: linear map

Fact: If Ker( ) then with Ran( )

always defined as an operator

Examples: (with supremum norm      )

(a) with

unbounded operator

sup sup

(b) with

notations:
the operator    is an extension of

the operator    is a restriction of

Note: Ker( ) not injective!

Ker( ) injective! exists

is densely defined

is not densely defined



Unbounded Operators - Part 3

Recall: operator (linear map between normed spaces)

subset in graph of

graph of

normed space with

Definition: An operator                         is called a closed operator if

the graph       is closed (in the normed space       ).

Note: closed for each sequence                with

we have: and

Proof: closed for each sequence

that is convergent in       with limit

we have:

and

Remember: with bounded closed operator



Unbounded Operators - Part 4

Closed operator: closed

closed

Closable operator: closable

is the graph of an operator
closure of

Proposition: closable

is a graph not possible                      for

If then

For each                 with and

we have

Define      for a closable operator

and convergent

lim operator! closure of



Unbounded Operators - Part 5

closable
For each                 with

and

we have:

Example: canonical unit vectors

span

sup sup sup unbounded
operator!

Closable operator? not continuous at

Choose                 with and

Choose          and subsequence       such that:

Define:

Then: for all For each                 with

and

we have:
is not closable



Unbounded Operators - Part 6

Closed Graph Theorem: Banach spaces operator

with closed e.g.

Then: closed continuous (bounded)

Proof: Assume:

Choose with and

continuous

lim lim

and closed

is closedAssume is closed in
Banach
space

Define operators: and
linear + bounded

bijective!

Bounded
Inverse 
Theorem

Functional Analysis
- Part 27 is continuous (bounded operator)

composition

continuous maps
of

continuous (bounded)



Unbounded Operators - Part 7

Banach spaces operator

Closed Graph Theorem: closed bounded

Example: functional unbounded (see part 5)

extend:

not closed

Proposition: Banach spaces operator

Then: closed

graph norm

complete

Proof: linear
+

bijective

is an isometric isomorphism

complete complete

closed in

closed



Unbounded Operators - Part 8

For bounded operators:

Hilbert spaces

adjoint

Banach spaces

adjoint

for

Proposition: Banach spaces densely defined operator

Then there is an operator with

for

The domain         can be chosen maximally.

Proof: Set there is         with for all

and define:

Well-defined? Assume there are with
for all

for all

for all

for all

dense

continuity

For Hilbert spaces: Hilbert spaces densely defined operator

there is         with for all


