The Bright Side of Mathematics

The following pages cover the whole Unbounded Operators course of the Bright Side of Mathematics. Please note that the creator lives from generous supporters and would be very happy about a donation. See more here: [https://tbsom.de/support](https://thebrightsideofmathematics.com/support)

Have fun learning mathematics!

1

Unbounded Operators - Part 1

quantum mechanics: one needs operators with $XP - PX = i \cdot I$

Motivation: partial differential equations

 $\frac{\text{Definition:}}{\text{Left}}$ Let $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ be normed spaces (same field $F \in \{R, C\}$) **and subspace.**

A linear map $T: \mathbb{D} \longrightarrow Y$ is called an operator.

Other notations: \cdot $\top: \mathsf{X} \supseteq \mathsf{J} \longrightarrow \mathsf{Y}$ $\mathbf{F}: \mathsf{X} \longrightarrow \mathsf{Y}$ with domain \mathbb{D} \bullet (\top, \mathbb{D}) or \top with $\mathbb{D}(\top) = \mathbb{D}$

Moreover: T is called <u>densely defined</u> if $\overline{D}^{\|\cdot\|_X} = X$.

The Bright Side of Mathematics

Unbounded Operators - Part 2

Recall: operator T: X
$$
\rightarrow
$$
 Y with $\mathcal{D}(T) = D$
\nmeans: T: $\mathcal{D} \rightarrow$ Y linear map
\nFact: If Ker(T) = $\{0\}$, then T^{-1} : Y \rightarrow X with $\mathcal{D}(T^{-1})$ = Ran(T)
\n \downarrow always defined as an operator
\nExamples: X = Y = C([0,1]) (with supremum norm ||·||_∞)
\n(a) T: X \rightarrow Y with $\mathcal{D}(T) = C^{1}([0,1])$
\n $T_{x} = x^{3}$
\nunbounded operator
\n $||T|| = \sup_{||x||_{\infty} = 1} ||T_{x}||_{\infty} = \sup_{||x||_{\infty} = 1} ||x^{3}||_{\infty} = \infty$
\n(b) S: X \rightarrow Y with $\mathcal{D}(S) = \{x \in C^{1}([0,1]) | x(0) = 0 \}$
\n $S_{x} = x^{3}$

notations: $S \subseteq T$

 κ the operator Γ is an <u>extension</u> of Γ \sum

 \sim the operator ζ is a <u>restriction</u> of \top

Note:

\n
$$
\text{Ker(T)} \neq \{0\}
$$
 not injective:

\n $\text{Ker(S)} = \{0\}$ injective:

\n $\implies S^{-1} \text{ exists}$

\n $\cdot \text{ } \top \text{ is densely defined} \quad \left(\text{ } \frac{C^1([\Omega, \Pi])}{\text{ } \| \cdot \|_{\infty}} = \text{ } C([\Omega, \Pi])\right)$

\n $\cdot \text{ } S \text{ is not densely defined}$

BECOME A MEMBER

ON STEADY

The Bright Side of Mathematics

Unbounded Operators - Part 3 $Recall:$ **operator** $T: X \supseteq D(T) \longrightarrow Y$ (linear map between normed spaces) \iff subset in $X \times Y$ $Y \wedge \qquad \qquad \text{graph of } T$ graph of $T: G_T := \{(x,y) \in X \times Y \mid x \in D(T)$, $Tx = y\}$ $X \times Y$ normed space with $\left\| (x_i y) \right\|_{X \times Y} := \|x\|_X + \|y\|_Y$ $\frac{\text{Definition:}}{\text{An operator}}$ T: $X \supseteq D(T) \longrightarrow Y$ is called a closed operator if the graph G_{T} is closed (in the normed space $X \times Y$). $\overline{\text{More:}}$ **closed** $\left\langle \text{min}\right\rangle$ **for each sequence** $(X_n)\subseteq\mathbb{D}(T)$ **with we have: and** $\frac{\text{Proof:}}{\text{C}_{T}}$ closed \iff for each sequence $(x_{n},T_{x_{n}})\subseteq G_{T}$ that is convergent in $X \times Y$ with limit

> $(x,y) \in X \times Y$ we have: $(x, y) \in G_{+}$.

 $X \in D(T)$ and $T_X = Y$

 R **Remember:** $T: X \rightarrow Y$ with $D(T) = X$ bounded \Rightarrow closed operator

The Bright Side of Mathematics

Unbounded Operators - Part 4

Closed operator: closed

$$
\begin{array}{ll}\n\top: X \supseteq \mathcal{D}(\top) \longrightarrow Y & \text{closed} \\
\iff & G_{\top} := \left\{ (x,y) \in X \times Y \mid x \in \mathcal{D}(\top) \text{ , } \top x = y \right\} & \text{closed}\n\end{array}
$$

Closable operator: closable

$$
T: X \supseteq \mathcal{D}(T) \longrightarrow Y
$$
 closebe

$$
\therefore \Leftrightarrow \overline{G_{T}}
$$
 is the graph of an operator \overline{T}

Proposition:	\n $T: \chi \supseteq \mathcal{Y}(T) \longrightarrow \gamma$ \n closedible \n
\n $\iff \overline{G_T} \text{ is a graph } (\text{not possible } (0,0), (0,\gamma) \in \overline{G_T} \text{ for } \gamma \neq 0)$ \n	
\n $\iff \text{If } (0,\gamma) \in \overline{G_T}, \text{ then } \gamma = 0.$ \n	\n $G_T := \{ (x,y) \in X \times \gamma \mid x \in \mathcal{D}(T), T \times \{0\} \}$ \n
\n $\iff \text{for each } (x_n) \subseteq \mathcal{D}(T) \text{ with } x_n \Rightarrow 0 \text{ and } Tx_n \longrightarrow y,$ \n	
\n $\text{we have } \gamma = 0.$ \n	

 $\overline{p_{\text{efine}}}$ \overline{T} for a closable operator $T: X \supseteq \mathcal{D}(T) \longrightarrow Y$: $D(\overline{T}) := \{ x \in X \mid \exists (x_n) \subseteq D(T) : x_n \rightarrow x \text{ and } Tx_n \text{ convergent} \}$

BECOME A MEMBER

ON STEADY

The Bright Side of Mathematics

Unbounded Operators - Part 5

 $T: X \supseteq \mathcal{D}(T) \longrightarrow Y$ closable \iff

For each
$$
(X_n) \subseteq D(T)
$$
 with
 $X_n \to 0$ and $TX_n \to y$,
we have: $y = 0$.

 $\frac{Example:}{P} \times = \int_{0}^{1} (N, \mathbb{C})$, $e_{1}, e_{2}, e_{3}, \dots$ canonical unit vectors $\sum_{i=1}^{N} (0,1,0,0,...)$ $T: X \supseteq \mathcal{D}(T) \longrightarrow \mathbb{C}$, $\mathcal{D}(T) = \text{span}\left\{ e_j \mid j \in \mathbb{N} \right\}$ $e_i \mapsto j$ $\sum_i \lambda_j e_j \longmapsto \sum_i \lambda_j \cdot j$ $\|\top\| = \sup_{\|x\|_{X}=1} \|\top_{x}\|_{\mathbb{C}} \geq \sup_{\mathbf{j}\in\mathbb{N}} |\top_{e_{\mathbf{j}}}| = \sup_{\mathbf{j}\in\mathbb{N}} \mathbf{j} = \infty$ anbounded
operator! **Closable operator? not continuous at** Choose $(X_n) \subseteq D(T)$ with $X_n \to 0$ and $Tx_n \nrightarrow 0$. Choose $\epsilon > 0$ and subsequence (x_{n_k}) such that: $|\text{Tx}_{n_k}| \geq \epsilon$

The Bright Side of Mathematics

Unbounded Operators - Part 6 $\frac{\text{Closed Graph Theorem:}}{\text{X,Y}}$ Banach spaces, $\top: \text{X} \supseteq D(\tau) \longrightarrow \text{Y operator}$ with $D(T)$ closed $(e.g. D(T) = X)$. Then: T closed \leftarrow T continuous (bounded) **Proof:** Assume: $D(T) = X$. $K_n \to \mathbb{R}$ Choose $(X_n) \subseteq D(T)$ with $X_n \to \mathbb{R}$ and $Tx_n \to \mathbb{R}$ **continuous** \Rightarrow \Rightarrow $\lim_{n \to \infty} T(x_n) = T(\lim_{n \to \infty} x_n) = Tx$ \Rightarrow $x \in D(T)$ and $Tx = y \Rightarrow T$ closed Assume T is closed \Rightarrow G_{τ} is closed in $X \times Y \Rightarrow (G_{\tau}, \| \cdot \|_{X \times Y})$ space **Define operators: and**

linear + bounded bijective! Bounded Inverse Theorem Functional Analysis $\overline{P_{\mathsf{X}}^{(1)}}$: $X \rightarrow G_{\mathsf{T}}$ is continuous (bounded operator)

The Bright Side of Mathematics

J

Unbounded Operators - Part 7

X,Y Banach spaces, T: X
$$
\supseteq D(T) \rightarrow Y
$$
 operator
\n $\frac{\text{closed Graph Theorem:}}{\text{Example:}} \quad D(T) = X \implies (T \text{ closed } \iff T \text{ bounded}$
\n $\frac{\text{Example:}}{\text{Example:}} \quad \text{functional} \quad T: X \rightarrow \mathbb{C} \quad \text{unbounded (see part 5)}$
\n $\Rightarrow \text{extend: } D(T) = X$
\n $\implies T \text{ not closed}$
\nProposition: X,Y Banach spaces, T: X $\supseteq D(T) \rightarrow Y$ operator.
\nThen: T closed $\iff (D(T), \| \cdot \|_T)$ complete
\n $\iff \text{graph norm}$
\n $\|x\|_T := \|x\|_X + \|\text{Trx}\|_Y$
\nProof: J: $(D(T), \| \cdot \|_T) \longrightarrow (G_T, \| \cdot \|_{X*Y})$
\n $\times \longmapsto (x, Tx)$
\n $\|Jx\|_{X*Y} = \| (x, Tx) \|_{X*Y} = \|x\|_X + \|Tx\|_Y = \|x\|_T$

 \implies *J* is an isometric isomorphism

$$
\begin{array}{ccc}\n\left(\mathbb{D}(T), \left\|\cdot\right\|_{T}\right) & \text{complete} & \Longleftrightarrow & \left(\mathcal{G}_{T}, \left\|\cdot\right\|_{X^{*}Y}\right) & \text{complete} \\
& \Longleftrightarrow & \left(\mathcal{G}_{T}, \left\|\cdot\right\|_{X^{*}Y}\right) & \text{closed in } X^{*}Y \\
& \Longleftrightarrow & \left(\overrightarrow{\cdot} \right) & \text{closed in } X^{*}Y\n\end{array}
$$

The Bright Side of Mathematics

BECOME A MEMBER

ON STEADY

Unbounded Operators	Part 8		
For bounded operators:	$T: X \rightarrow Y \rightarrow Y$	\rightarrow $T^* : Y \rightarrow X$	adjoint
Filter 5 paces	$\langle y, Tx \rangle = \langle T^*y, x \rangle$		
$T: X \rightarrow Y \rightarrow Y \rightarrow Y^*$	adjoint		
Example 1: $\langle y, \rangle = \langle y, \rangle$	$\langle y, \rangle = \langle y, \rangle$		
Proposition:	$\langle Y, Y \rangle$	Binary 4	
Proposition:	$\langle Y, Y \rangle$	Binary 5	
Proposition:	$\langle Y, Y \rangle$	Binary 6	
Proposition:	$\langle Y, Y \rangle$	Binary 7	
When there is an operator	$T^* : Y^* \supseteq D(T^*) \rightarrow X^*$	with	
$\langle Y^* \rangle = T^* (y^*) (x^*)$	for $x \in D(T) \rightarrow Y^*$		
Then there is an operator	$T^* : Y^* \supseteq D(T^*) \rightarrow X^*$	with	
$\langle Y^* \rangle = T^* (y^*) (x^*)$	for $x \in D(T^*)$		
Then $\langle Y^* \rangle = \langle Y^* \rangle$	there is $x^* \in X^*$	with $y^* (Tx) = x^* (x)$	for all $x \in D(T)$

and define:

 $T'(y) := x^{y}$

Well-defined? Assume there are
$$
x_1^3
$$
, $x_2^3 \in X^3$ with $y^3(Tx) = x_1^3(x)$
\n $y^3(Tx) = x_2^3(x)$
\n $\Rightarrow x_1^3(x) = x_2^3(x)$
\n $\Rightarrow x_1^3(x) = x_2^3(x)$
\nfor all $x \in D(T)$
\n $\Rightarrow (x_1^3 - x_2^3)(x) = 0$
\nfor all $x \in D(T)$
\n $\Rightarrow x_1^3 = x_2^3$
\n $\Rightarrow x_1^3 = x_2^3$

For Hilbert spaces: X, Y Hilbert spaces, $T: X \supseteq D(T) \longrightarrow Y$ densely defined operator
 $\rightarrow \overline{D(T)} = X$

$$
\mathcal{D}(T^*) := \left\{ y \in Y \mid \text{ there is } \tilde{x} \in X \text{ with } \langle y, Tx \rangle = \langle \tilde{x}, x \rangle \text{ for all } x \in \mathcal{D}(T) \right\}
$$

$$
T^*(y) := \tilde{x}
$$