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Start Learning Numbers - Part 1

Natural numbers

1 32 4

empty set0
1 0 set with one element

2 set with two elements0 1
3 set with three elements0 1 2
4 0 1 2 3 3 3

Axiom: There is a set     with the properties: (a)

(b)

0

And     is the smallest set having these two properties.

Successor map: 6 7
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Start Learning Numbers - Part 2

Natural numbers:

Properties of    : (1)

(2) There is a map               that satisfies:

(2a)

(2b)

(2c)

is injective

If         with

and

then

(mathematical induction)

Addition in     : map

How is it defined?

Recursive definition:

Dedekind's principle of recursive definition:

For a set             and               , then there exists a unique map

with              and
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Start Learning Numbers - Part 3

Natural numbers:

Each        has a unique successor:

We already know: (RD)

Mathematical induction:

satisfies the induction property:

Let       be a property for natural numbers     ("predicate").

If: (1)       is true (base case)

    (2)                             is true (induction step)

Then:       is true for all is true

(induction step)(base case)

Proposition: For all              , we have:

(associative law)

Proof:  Use mathematical induction.

is given by:



Base case: means

true

Induction step:

Assume      is true.

means

(RD)

Left-hand side:
(RD)

(RD) (RD)

Right-hand side
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Start Learning Numbers - Part 4

Natural numbers:

Addition    is a map                     with:

(neutral element)
(associative law)

(commutative law)

Ordering:     We write               if:

And we write           if:

Properties: (1) (reflexive)

(2) If                     ,  then (antisymmetric)

(3) If                   ,  then (transitive)

Proof: Assume         and        are true. So:

and                         are true.

Therefore:

Therefore:                          is true, so           is true.
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Start Learning Numbers - Part 5

Natural numbers:

We have   of them

How can we define the multiplication?

Multiplication in map

defined by

(recursive definition)

(Map is well-defined by Dedekind's recursion theorem)

Properties: (1) (associative)

(2) (commutative)

(3) (neutral element)



How to connect    and   : (distributive)

Proof by induction: Base case:

Left-hand side:

Right-hand side:

Induction step: Assume                              holds for
(induction hypothesis)

Left-hand side:

(i.h.)

← Right-hand side
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Start Learning Numbers - Part 6

0  1  2  3  4  5  6  7  8  9

Idea:  Look at pairs

0
0

1 2 3 4 5

1
2
3
4

should be the "same"stands for

stands for
← not okay

← totally okay
(equivalent)

Equivalence relation:  We write                    if:

Properties: (1)

(2)

(3)

(reflexive)

If , then (symmetric)

If                and ,

then
(transitive)



Property of     (cancellation):

If                   , then

0
1 2 3 4 5

1
2
3
4

Box 2
Box 1Box 0

Box 0

is called the equivalence class of       .

Box 0

Box 1

Box 2

Box -1

Box -1

Box -2

set of all boxes (equivalence classes)
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Start Learning Numbers - Part 7

In                     is not solvable! No "inverse" of   .

with

and

Question: Is                     now solvable? And with          ?

First question: How is    as a map                  defined?

well-defined?

Take               and               . Then 

Is                               ?



Proof:
implies:

Examples: (a)

(b)

Properties of   together with   :
map

(a) associative

(b) commutative

(c) (   is neutral element)

(d) For all       , there is an element        with              .

is an abelian group
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Start Learning Numbers - Part 8

think of

think of

The multiplication is well-defined.

Properties of   together with   :
map

(a) associative

(b) commutative

(c) (   is neutral element)

(d) distributive

Examples: (a)

(b)
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Start Learning Numbers - Part 9

ratio:        or         or 

fraction:

Solve We need inverses with respect to

Works the same as 

For                            define:

0  1  2  3  4  5  6  7  8  9

 by

Examples:

rational numbers

We get all integers back!

fractions

Definition:
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Start Learning Numbers - Part 10

Multiplication: well-defined!

For      , we have:

Solve: In     : is solved by:

Property: is an abelian group.

How to define the addition?

We want the distributive law:

should be defined by:

Define: well-defined!

Proposition: The set     together with the operation   and   satifies:

(1)  is an abelian group

(2)  is an abelian group

(3)  distributive law

field
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Start Learning Numbers - Part 11

We need to define it

Definition of    for   : For           , we write          if

Now: because

Definition of    for   :

defined by

For          and

Properties of    for   : (1) Ordering: reflexive, antisymmetric and transitive.

(2) For all           : If         , then

(3) For all           : If               , thenand

(4) Total order: For all          , we have         or        .

(5) Archimedean property: For all           with        and

we have:


