becomea member

Start Learning Numbers - Part 10

$$
\mathbb{Q}=\left\{\left.\frac{a}{b} \right\rvert\, a \in \mathbb{Z}, b \in \mathbb{Z} \backslash\{0\}\right\}, \quad \frac{a}{b}=\frac{c}{d} \Leftrightarrow a \cdot d=c \cdot b
$$

Multiplication: $\quad \frac{a}{b} \cdot \frac{c}{d}:=\frac{a \cdot c}{b \cdot d} \quad$ well-defined:

For $a \neq 0$, we have: $\frac{a}{b} \cdot \frac{b}{a}=\frac{a \cdot b}{b \cdot a}=\frac{1}{1}(=1)$
Solve: $4 \cdot x=1$? In $\mathbb{Q}: \quad \frac{4}{1} \cdot x=\frac{1}{1}$ is solved by: $x=\frac{1}{4}$
Property: $\left(\mathbb{Q} \backslash\left\{O_{Q}\right\}, \cdot\right)$ is an abelian group.

How to define the addition?
We want the distributive law:

$$
\begin{array}{r}
\frac{a}{d}+\frac{c}{d}=\frac{a}{1} \cdot \frac{1}{d}+\frac{c}{1} \cdot \frac{1}{d} \stackrel{\downarrow}{=}\left(\frac{a}{1}+\frac{c}{1}\right) \cdot \frac{1}{d}=\frac{a+c}{d} \\
\text { should be defined by: }
\end{array}
$$

$$
\begin{aligned}
\frac{a}{b}+\frac{c}{d} & =\frac{a}{b} \cdot \frac{d}{d}+\frac{c}{d} \cdot \frac{b}{b}=\frac{a \cdot d}{1} \cdot \frac{1}{b \cdot d}+\frac{c \cdot b}{1} \cdot \frac{1}{b \cdot d} \\
& =\left(\frac{a \cdot d}{1}+\frac{c \cdot b}{1}\right) \cdot \frac{1}{b \cdot d}=\frac{a \cdot d+c \cdot b}{b \cdot d}
\end{aligned}
$$

Define: $\frac{a}{b}+\frac{c}{d}:=\frac{a \cdot d+c \cdot b}{b \cdot d} \quad$ well-defined:

Proposition: The set \mathbb{Q} together with the operation tand esatifies:
$\left.\begin{array}{l}\text { (1) }(\mathbb{Q},+) \text { is an abelian group } \\ \text { (2) }\left(\mathbb{Q} \backslash\left\{O_{Q}\right\}, \cdot\right) \text { is an abelian group } \\ \text { (3) distributive law }\end{array}\right\}$ field

