Start Learning Numbers - Part 7

In $\mathbb{N}_{0} \quad 4+x=0$ is not solvable: No "inverse" of 4.
$\mathbb{Z}:=\left\{[(a, b)]_{\sim} \mid(a, b) \in \mathbb{N}_{0}^{2}\right\}=: \mathbb{N}_{0}^{2} / \sim$

$$
\begin{aligned}
& \text { with }[(a, b)]_{\sim}:=\{(x, y) \mid(x, y) \sim(a, b)\} \\
& \text { and }(x, y) \sim(a, b) \Leftrightarrow x+b=a+y
\end{aligned}
$$

$$
\begin{array}{ll}
{[(0,0)]_{\sim}=: 0_{\mathbb{Z}}} & {[(0,1)]_{\sim}=:(-1)_{\mathbb{Z}}} \\
{[(1,0)]_{\sim}=: 1_{z \mathbb{Z}}} & {[(0,2)]_{\sim}=:(-2)_{z \mathbb{Z}}} \\
{[(2,0)]_{\sim}=: 2_{z}} & \vdots
\end{array}
$$

$$
\mathbb{Z}=\left\{\ldots,(-2)_{z z},(-1)_{z z}, 0_{z z}, 1_{z z}, 2_{z}, \ldots\right\}
$$

Question: Is $\psi_{\mathbb{z}}+x=O_{\mathbb{Z}}$ now solvable? And with $x=(-4)_{\underline{z}}$?

First question: How is + as a map $\mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z}$ defined?

$$
[(a, b)]_{\sim}+[(c, d)]_{\sim}:=[(a+c, b+d)]_{\sim}
$$

Take $(\tilde{a}, \tilde{b}) \sim(a, b)$ and $(\tilde{c}, \tilde{d}) \sim(c, d)$. Then $[(\tilde{a}, \tilde{b})]_{\sim}+[(\tilde{c}, \tilde{d})]_{\sim}=[(\tilde{a}+\widetilde{c}, \tilde{b}+\tilde{d})]_{\sim}$

$$
\text { Is }(\tilde{a}+\tilde{c}, \tilde{b}+\tilde{d}) \sim(a+c, b+d) \text { ? }
$$

$$
\left.\begin{array}{rl}
\text { Proof: } & (\tilde{a}, \tilde{b}) \sim(a, b)
\end{array} \begin{array}{l}
\quad \Leftrightarrow \quad \tilde{a}+b=a+\tilde{b} \\
\\
(\tilde{c}, \tilde{d}) \sim(c, d) \Leftrightarrow \tilde{c}+d=c+\tilde{d}
\end{array}\right\} \begin{array}{r}
\text { implies: } \tilde{a}+\widetilde{c}+b+d=a+c+\tilde{b}+\tilde{d} \\
\Leftrightarrow(\tilde{a}+\widetilde{c}, \tilde{b}+\tilde{d}) \sim(a+c, b+d)
\end{array}
$$

Examples: (a) $4_{z z}+2_{z \mathbb{z}}=[(4,0)]_{\sim}+[(2,0)]_{\sim}=[(6,0)]_{\sim}=6_{z z}$
(b) $\quad 4_{z z}+(-4)_{z z}=[(4,0)]_{\sim}+[(0,4)]_{\sim}=[(4,4)]_{\sim}=[(0,0)]_{\sim}=O_{z}$

Properties of \mathbb{Z} together with $+:$ map $\mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$
(a) associative
(b) commutative
(c) $m+O_{\mathbb{Z}}=m \quad$ ($O_{\mathbb{Z}}$ is neutral element)
(d) For all $m \in \mathbb{Z}$, there is an element $\tilde{m} \in \mathbb{Z}$ with $m+\tilde{m}=O_{\mathbb{Z}}$
$\rightarrow(\mathbb{Z},+)$ is an abelian group

