ON STEADY

The Bright Side of Mathematics

$$Start Learning Numbers - Part 4$$
Natural numbers: $N_0 = \{0, 1, 2, 3, 4, ...\}$
Addition + is a map $N_0 \times N_0 \longrightarrow N_0$ with:
$$m + 0 = m \quad (neutral element)$$

$$(k+m) + n = k + (m+n) \quad (associative law)$$

$$m + n = n + m \quad (commutative law)$$
Ordering: We write $h \leq m$ if:
$$\exists k \in N_0: m = n + k$$
And we write $h \leq m$ if: $h \leq m \land h \neq m$
Properties: (1) $h \leq n \quad (reflexive)$
(2) If $n \leq m \land m \leq n$, then $n = m \quad (antisymmetric)$
(3) If $n \leq l \land l \leq m$, then $n \leq m \quad (transitive)$
Proof: Assume $n \leq l$ and $l \leq m$ are true. So:
$$\exists k \in N_0: l = n + k_k \quad and \quad \exists k \in N_0: m = l + k_k \text{ are true.}$$
Therefore: $m = l + k_k = (n + k_k) + k_k$

 $= n + (k_1 + k_2) = n + k$

Therefore:
$$\exists k \in \mathbb{N}_0$$
: $m = n + k$ is true, so $n \le m$ is true.