The Bright Side of

Start Learning Numbers - Part 4

Natural numbers: $\mathbb{N}_{0}=\{0,1,2,3,4, \ldots\}$
Addition + is a map $\mathbb{N}_{0} \times \mathbb{N}_{0} \longrightarrow \mathbb{N}_{0}$ with:

- $m+0=m$ (neutral element)
- $(k+m)+n=k+(m+n)$ (associative law)
- $m+n=n+m$ (commutative law)

Ordering:
We write $\quad h \leq m \quad$ if:
$\exists k \in \mathbb{N}_{0}: \quad m=n+k$

And we write $n<m$ if: $n \leq m \quad \wedge \quad n \neq m$

Properties:
(1) $n \leqslant n$ (reflexive)
(2) If $n \leq m \wedge m \leq n$, then $n=m$ (antisymmetric)
(3) If $n \leq l \wedge l \leq m$, then $n \leq m$ (transitive)

Proof: Assume $n \leq l$ and $l \leq m$ are true. So:
$\exists k_{1} \in \mathbb{N}_{0}: \quad l=n+k_{1}$ and $\exists k_{2} \in \mathbb{N}_{0}: m=l+k_{2}$ are true.
Therefore: $\quad m=l+k_{2}=\left(n+k_{1}\right)+k_{2}$

$$
=n+(\underbrace{k_{1}+k_{2}}_{=: k \in \mathbb{N}_{0}})=n+k
$$

Therefore: $\exists k \in \mathbb{N}_{0}: m=n+k$ is true, so $n \leq m$ is true.

