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Statement that is either True or False

(a) Mars is a planet (Tvue logical s’ra’femenﬂ

(b) Pluto is a planet (Fa\se logical s’(a’femen’f)

(¢) 1+14 =7 (True logical s’fa’remen’f)

(d) The number 5 is smaller than the number 2 (Fa\se logical s’fa’remen’f)
(e) Good morning: (NoT a logical statement)

(f) x+14 =1 (No’r a logical s’ra’femenﬂ ~=> predicate

Logical operations:

Truth fable

Al-
Negation: For a logical statement A , s

T| T
Tl T

_IA denotes the negation,

Examples: (a) A = The wine bottle is full
— A = The wine bottle is not full
A= 1+1=5
“A = 1+L#8

Truth table
Conjunction: For two logical statements A ; B, A B A A B
A A B denotes the conjuction, TIT T
AT B ToF
baﬂtry — T T T
FIFl T
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logical
ﬁ_’va?iab\es

&
Logical statements A,ﬁ ~~> pnew logical statements ﬂA ) AAB

t A\
logical /

Logical operations: operations
Disjunction: For two logical s’ra’remen’(sA , B, Truth table
A \'% B denotes the disjunction, é b AVB
— (T T
A
— T
B T T
battery — | T =
Example: A v A Truth fable

W
A A Ay A .esaqﬂAvA
— is a Tautology.
T jr_ | C> always true
:F 'T' T (independent of the truth values

of the logical variables that are contained)

Logical equivalence: Ty logical statements are called logically equivalent

it the truth tables (all possible assignments of truth
values for the logical variables) are the same,

Example: _I(A Vv B) <::> ("1 A) A (" B)

Al | AvB | —A -3 _'O\VB) A A A3
T|T| T | F | F i3 T
T F T F T T T
Tl Tl T T F T t
TN (A T T T T T
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Logical operations: Truth table
AlB| A—3
Conditional: For two logical s’raTemeMsA, :B, TIT T
A%B denotes the conditional, T 7F T
FT| T
ot 7T
—> means —> gives Tautology
L/’rau’rdoqq
A[B| ArB | AnB - 3B
T T T T We can wrife:
TI+| T T
Tl T T T A/\:B = 3B
ot F T
Truth fable
Biconditional: For two logical s’ra’remen’fsA ’ «B, AlB| A<3
AﬁB denotes the biconditional, or T
T|F| ¥
<=> means <> gives tautology FIT T
HEl T

Example: (a) A <> B = (Aézg) A (B>A)

b

(b) A - 3R & -3 - —|A (contraposition)
It there is fog, then It we don't have poor visibility,
we have poor visibility there is no fog.

Peduction rules: (how fo get new frue propositions from other true propositions)

Modus ponens: If A=>3 true and A frue, then: B Hrue

AlB| A->3
o[ [ T T o
Tt t
FIT| T
| F| T

Chain syllogism: If A=>3 frue and B->C true, then: A=>C true

Reductio ad absurdum: If A>3 frue and A=-B true, then: 2 A true
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Propositional Logic Logic
N +
_ Axioms of
Naive set theory set theory
Goal: doi themati e~ %,
Il TS foundation of mathematics
1. : e . . J‘cf M
SeT: collection of distinct objects into a whole @/ B /
Such an object X inside a set M is called A, @ M
i 2
an element of M, write: xeM
It X is not such an object inside meams:—l(XG M) ¢M
the set M, we write: xéM
A set can be defined by giving all its elements: A s — iz' S, (§
'\deﬁmed by
Examples: Empty set: @ = {’k
Natural numbers: N := i']lll 3, ‘f, S, /§
Nafural numbers (including zero): INo s = io’ 1121 3, ‘f/ g
Integers: £ := z, -1,-1,0.,1,1, ’g
Rational numbers Q. Real numbers R Complex numbers

"> quantifiers VY 3 predicates  x€ IN
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is an even number false logical statement

[1] is an animal false logical statement

f/::_\}’j\/ True logical statement

predicates

Predicate:  An expression with undetermined variables that ascribes a property
fo objects filled in for the variables,

Form new sefs: { xe N \ X is an even numbev}
éy c 7 ] ye INjg

For A:= 2Mevcuw, Venus, Earth, Mars, Tupiter, Saturn, Uranus, Nep’fune}

form: {‘FG A | p has at least 1 confirmed moon’g

Quantifiers : \V/X for all X 3 X it exists X

Predicate: X is a planet

VX : X is a planel, ~~~> logical statement
false

dx : X is a planet ~~~> logical statement
True

Equality for sefs: Two sets A/ B are the same, written as A =3 if

VX : XeA & xel is true,

Example: C::£Z/ 3, 5}

{/3,5_, Z}:tj) leC = 1€ Hrue
2€C«> 1€ true

{13,85 = $1,1,2,3,3 5%

N
Subsets: For two sets A, B, we write AcBif

VX e XGA > xel is True,
V\f’\_/

Short notation: VxeA . xeB

We call A a subset of B (We can also write B2 A)
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A_C__B@-isasupevse’fofA S BCB/
Kisasubse’f of B ¢CB

VX : Xe¢’> xe B

Union: a‘s AuB ;_—_{x l xe A v xe:Brg

(Vx: XeAuB —> XeAV xe B > is true

Intersection: aog Af\?) - zx l xe A A Xe:B’%

Set difference:
a’s M8z x| xeha xe]
Example: A::§l1,2,q% A 5_3’9'53 geg

AvB=51,1,3,4,5% , And=345 , A\B = {1,13

Big union: Need: [ set , A.b set for each el

L_%AL 1= ix ‘ JieT : XéALl

Big intersection: mAh .= ix ‘ YieT : XeA;,E @

Example: A1:{4l§ , A,L: {Z,g , A3=iz‘% [

L=, A= mwen UA = 342.5,.0=n
€T

A = &
T
The set of all
Power sef: For a sef A define ?(A> r= ix | x < A} subsets of A

Example: A - 11,2, 313 - P(A) = iqf, 0,38, 143 3%, 1%, el 52,3"5.{1,3}}
e (M@, [T =8 = &
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Cartesian product: A x B set of all ordered pairs
=3 A,0,0
A=} A0, }M>(A'7) 2lah @D ©7
8= {473 (0% @Y @9

_ A ] O
Definition of ordered pair: For elements X, Y write QX.)’) = i 2@ / {x:}'}}

Gy = D @ W A (o=
<= X=X A )/:7

Definition: Ax B = &(a,k) ‘ ac A A be Bg

A

A subset GJ( < AxB is called a function if

(Vx V)/ V}/V (X.Y)Cé:g A QX.?)CG; —> y:'>‘f> is True,

3 D= : --
‘ /\_/ ‘ not a function
| A T

| Y A

1t also VxeA: Elye:_(b) : (.X.)/)Céag is true,
we write: /75 A—=>3 and 5:(70:)’ for (X.)/)CGL;

/& /Qcoolomain of § w

domain of §

a map from A into 3 graph of f§

Example:

5) = 1
flO)=¢
f(O)=¢
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Map: 5 : A — B
Epr\e: 5:: lN —> Z new notation for 5(?\) = X'L
X —> X I

Bange:  Ran(§):= §yeB | IxeA: §00-y]

::{/g(x) X € A} (shorter notation)

Example: 5 R«R = R

%0
oV

Ren(§) = fyeR | y= ol

l image of A:  §[K)

For a subset A cA,

§[K] = iyc—:js ‘ 1x<A : 5 :Yl = 25—(@ \xeK’S

Image and preimage:

denotes the image of A under ;F . ¢

N\

e -

For gc_:(ﬁ,

§T8=f xeh | S0

denotes the preimage of g under }

Example: FN—>z §[i2,3,‘f3] = i0,33
0 if x even
X = ~1
ix it x odd 5 [i%} :{12,4,4,8, 10,...’3
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A/ 3

not injective

not surjective

Definition: A map JC: A— B is called:

injective if Vx,,xteA : (x1#x1 —> KXD ‘#.;((’Q) is True

surjective if VyefB s Ixe A+ $(x) = y s true

Remember:

sur jective: Each )/GB gets at least one arrow,

injective:  Each )/GB gets at most one arrow.

injective + surjective Each )/G,B gets exactly one arrow,

bijective (1 1)
\
invertible

bijective

-1 inverse map
5 . b— A ,

-4

Sy=x i £ =y

Example: 5; ]N%{'{IQ—,SI 16,15, 3¢, }

X = xL

-1
${14,9,4%,15,3¢,. 3T >N
y =y
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TN /5\

99§

For §= A—9F and J:B —> C define:
303:: A%C

called the composition g with
x —>9(£0))

Examples:

(1)

(Jof)(ﬂ = J (305)(2) = J
(305)(3) = J (Jof)(tr) =J

. R—> R

X = X X > sin(X)
~rs (45 = sin(X) and (Fo9)(0) :(su.(ﬂ)l

identity map
e

For any set A, we define: LAA : A — A

X > X [ »

s
For §: A —> B bijective, we have:
-1
Jo§ = idg
-1
Seof = idy
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Natural numbers

f,( f f ! .f f ! f
N~ N ——— -/
1 gA 3 4
h\l:i4lzl‘3!q—l }

O := ¢ empty set
1 := {0} set with one element

>
||

{0/ 1} set with two elements

ol
1

50/1 2_% set with three elements
/

4:=10,1,2,3 = 3u {3l

Axiom: There is a set INO with the properties: (a) QeN,

(b) Vx: xeN, — xoixfe N,
And N, is the smallest set having these two properties.

Successor map: s: N, — N, —
X = Xuy ix'i ! S<b) L
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Natural numbers: n\]o = &0, 1,2,3,4%, }

Properties of INO: (1) Qe INO

(2) There is a map S: No — N, that satisfies:

(2a) s is injective

(2b) 0¢ Ran(s) =s[N,] . ‘
0123%4567%8 - (20) 18 M< N, with .
0eM and s[M] =M X
then M= IN,.

(mathematical induction)

N,

Addition in No : map IN,,XINO —> |No

(m, n) —> m4+n

How is it defined? V+4:=(

m+(D i= m

m+d = S(m) |, M+ = s(m+d)

/

Recursive definition: m+s(n) 1= 5(m+n)

2485 =7+5(4) = s(1+%) = s(¢) = 7

Dedekind's principle of recursive definition:

For a set A NS A and i A—> A, then there exists a unigue map

F-N,— A with  £(0) = & and $t) = h(§(m).
(", hea), hOWG) , (R ERED), ")
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Natural numbers: [N, = 20, 1,2,3,4, }
Each N € |N° has a unigue successor:

S:n\lo%"\jo / f(h.):h+4
We already know: Mm+(h+q) = (m+n) + (RD)

Mathematical induction:

INO satisfies the induction property:

Let ?(h) be a property tor natural numbers n
1f: (1) P(0) is true (base case)

(*predicate").

(2) ¥YnelN,: ?(h\ — P(n+4) is frue (induction step)
Then: rP(h) is true for all ne N, (\v'h : P(n) is true >

V000020 00000000 -

n n+4

(base case) (induction step)

Proposition: For all k, m,n € INO, we have:

(k+ m)+ N = k+(m+ h) (associative law)

Proof: Use mathematical induction.

?(h) Is given by:

Vk,MGNOI <k+l'w)+h:k+<m+n>

Base case: ?(O) means Vk,yne INO : (k+ M) + 0 = k + (M + O)
v\(_\/ e

n
K+ m
&> Vkﬂ“en\lo: kKim = k+ m true
Induction step: (Vne N,: P(h) = 'l’(n+4)>
Assume ?(h) is True, m+(h+1) = (m+n)+1  (®D)

/,)(h+']) means Vk,MQNO . (k+ M) + (yHID = k+ (M +(y,+/|)>

(RD)

Left—hand side: (k+ m) + (YH/D :((k.|. m) + h> + 4

()
— (k ¥ (M . h)) + 4 Right—hand side
(RD)

)
= k+((lm+ n)+ ’l> (';) k+<m+(:+/l>>
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Natural numbers: lNo = iO, 1,2,3,4, }

Addition + is a map N, x IN,—= N, with:

e M+ 0O = m (neutral element)

o (kim)+ n = k+(m+n) (associative law)

® mM+h = N+ m (commutative law)
Ordering: We write h< m if: _./._\./._.\.
0<1< 2L 3<h </3§
erh\lo: M = n+k \\‘_ _,,"
And we write hN<im if: h< m N n# m
Properties: 1) n<n (reflexive)
(2) If n<m A MmN, then h=m (antisymmetric)

(3) 1f nel A ﬂsm, then Nn<m (Transitive)

Proof: Assume n < ﬂ and 15 M are true, So:
HkﬁllNo: L=n+k and Hkﬁh\]o: m:f+|<zave’fvue.
Therefore: m=f+k, = (n+ k) +k,

= Y1+(]<4+l<1> =n+k

VY::Ke INa

Therefore: JkE INO : = n+ Kk is true, so n < mis true.
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Natural numbers: No = 'QD, 1,2,3,4%, }
4~+4-+4-+4ﬁ-4 =: S.4

N —/
wWe have S of them

3+3+3+3+3+3 =: 6£+3

4
0

-4

: 0-4 How can we define the multiplication?

Multiplication in INO : map INO X INo — No

(h, m) —> ne M defined by

O:m:i= (
(h+’|)-|m ::(h-m>+ m
gg. ) = 92+92+72+2+172 (recursive definition)
62

Successor

|

(Map is well=defined by Dedekind's recursion theorem)

)2+ +2+2+2 +72
NI
52

Properties: (1) n -(m -.k) — (h . m)- k (associative)

(2) nNem = mM-=+*nh (commutative)

(3) e = m (neutral element)

How to connect + and - ne (lm +k) = hem + h-k (distributive)

O:m:= 0 Proot by induction: Base case: h = 0
(hed) e m i=(nem)+ m

) Left—hand side: O . (Y\ﬂ +k) — O v4
Right—hand side: O. m  + O'k — O it O :O \/

Induction step: Assume n - (m+k) =hnem + n-k holds for n.

(induction hypothesis)

Left—hand side: (YH' 1)'(YV1 + k) g) h '(YYI + k) + (YY] + k)

(i.:h.)h- m +(h-k + |m>+k

(n- m + |m3+(n-k +k>

(VH‘ 1). m + (y]+ ’])- k « Right—hand side

%

)
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+2 + 4
/‘\//_\j No
o—9o—90 o o o o o o ¢ =
o 1 2 3 4 5 b 1T € 19
N_ P ~__/
‘t{’ -1
5-1=3 2-85 =1

(5,3
(42)
(3,1)

0 1 23 45 Szf'f?/

(5:37 stands for “5-3" should be the *same*
0 " S - = 4 -7  « pnot ok
(LI',Z) stands for (.|.-7," 3 & ho1 okay

S+2 = 4 +3 « totally okay
(5,3) n (4,7_) (eguivalent)

Equivalence relation: We write (a\, L) N (x,y) if:

A+Y = X+ b

Properties: (1) (o\, L) ~ (a, L) (reflexive)

(2) 1f (W) ~ (x,y) , then (x,y) ~ (a, b) . (symmetric)

(3) 1¥ (aV) ~ (x,y) and (x,y)~ (c, 4),
then (o) ~ (c, 0\7_

(transitive)

Box o Box 1

Box —1 Property of N, (cancellation):

Box 2
Va4
If m+n :v’w\n'+n,’rhen m=m .

Box 0 = [(z,z)l: i(x,y)e N; \ (X,yw(l,ﬂ}

is called the equivalence class of (l,'l) .

Box 0 = [_(o,o)l — I:(z,z)l Box —1 = [(o,’l)l ~ [(8,37:’
Box 1 = LU,D)]N = [(3,3)JN Box .—2 = [(o,z)l
Box 2 = E_(ZIO)J | |

: Z := set of all boxes (egquivalence classes)
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In N, 4 +x = 0 is not solvabler No ‘inverse* of &,

2= [, | e N =
with [(Q,L)]N ::z(x,y) ‘ (xly)N(a\,L)/g

and (x,y)N(a,L) = X+L=a+>l

I;(O,o)]”:: Oz l;(O, 4)]N = (— 1>z
[(4,0)]N:; 1, L(o,.Z)]N =3 (0
[(207] =: 1, 1

%:im,@0M00LOZ,H/ZZP~§

Question:  Is LI'Z + x = 0, now solvable? And with X :(—‘f)_z
First question: How is + as a map #x2 —> Z defined?

[(a,L)JN -+ [(c,ﬂt\ﬂ L= [(0\+C,L+0\>]N

well—defined? \/

o—o oo
b o\ )

Take (L)~ (a,b) and (&%)~ (c,d) Then [_(a,’t)]~+ [(’CV’M]N = [('M'E,'ﬁ +3(>—L

Is (%4, T4) ~ (arc, b+d)s
= a+b

@) .L
\ -

Proot: (&’,’l:)m(q,L) = orb

implies: X +& + b+d =o+C +b+d
(8 8)~ (c.d) & C+d =c+d

= (K+E,'E+2() ~ (MC, b +4)

amtles: (), + 1, = [(6,0]]_+ (o)) =[] = <.
® (), = [60] +[09] = [69)] =[l0e)] = 0,

‘e x# —
Properties of s together with +:L G 2

(a) associative

(b) commutative

() m+0, =m (0,is neutral element)
(d) For all meZ, there is an element We# with m+H = 0,

(Z, +) is an abelian group
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Z=].., (0, (0,0, 1,2 QS

), = Bmﬂ e think of (=% | ”
~ think of (a-b)-(c-4) = (ac + bd) - (ad + be)

~
[(a,L)]N s EQC,A)]N P = [(a\-c + bed , aed+ L-C>]N

The multiplication is well=defined,

L—map Ex2 — 7
Properties of Z together with .:

(a) associative

(b) commutative

) 1,om =wm (1, is neutral element)

(d) distributive
Examples: (a) q,z . Zz — [@'oﬂ,\,. [(’L,oﬂ,v — [(q..?_ +0-0, &0 +O-'LYJN = 82
© (), = [09] - (03], =002, 00+ 40)] =8,
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Z=3.-3-1,1,01,1,34,.]

/\ catio: 3:1 or 3:% o 1:4%
\/ fraction: % +i'+ =1

solve b.x =1 2 ~~> We need inverses with respect o

Works the same as (IN“ +) A~> (Z,'l')

For (c, o\),(a\,l;) erZ\io} define:
(a,b) ~ (c, d) by oed = cob

@ = (Z "Z\i%)/v = i[(a’l’)]m \ (a,l) € # "Z\SLO})"% rational numbers

Examples: [(q,l)jIN i(g,j,)tN = [(2,1)—J~ = ?_@
i(_jlﬂ)i,\‘: [(3/3)],\‘ = h(3/'1)— ::3& ; [(0’8)],\,: [(0'1)],\, :’OQ

L -~ A,

. _
_(_3’3)_,\,: [('3’1):|~::(_3)® We get all integers back:

[(zlgﬂ,\,:[(lllq)]~ = ({;)@ r~~=> fractions

oo [~
1)

—+ |~

S~~—'"

Definition: [ (a,b)] = O‘T <
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=14

ac £ | LGZ\{_“’S} | O‘—L =C'A— & ocd o =co b

MU\-hP“Ca-hOV]: % . 'CJ\' . — OL. i we\\—oleﬁmeol!
a b o b 1
F 0, h ; -~ ¢« — = = — —
or a+# we have ] " o 1 /1&>
solve: G+ x =1 Z In @ : % X = —14— is solved by: X :-%-

Property: (@\ioa& , -) is an abelian group.

How o define the addition?

We want the distributive law: «ﬂ
a 1 1 (a

& . cp_ & 1 c 1 (s c\ 1 _jJa+c
TURAPY R SR T S 4)' IO
& \
should be defined by:
6 ¢ o 4 c b ard Cb 4
— = - — e = =2 = - .
Ct R R U T U R
_<a-o\ \ c-L>_4_ a4+ Crb
S\ { L-d T Led
Define: i + & o 6:4 + Crb well=defined:
A A L.J

Proposition: The set @ fogether with the operation +and esatifies:
(1) (@I -I-) is an abelian group

(2) (@\ioa& , °> is an abelian group ﬁe\d

(3) distributive law
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@:{&T an‘,LeZ‘\M} @ < @
i — |

i |
-1 0

: | !
17, { z We need to define it

ol el
I

Definition of < for ZL: For a,Le #, we write o<b if er_h\lo: a+ k =b

Now: —l(]? < 13 because 3 < ({'

Definition of < for @: For b>0 and 4 >0
&
L

< defined by a-d < c-b

S
A
Properties of < for @: (1) Ovdering: reflexive, antisymmetric and transitive,

(2) For all x,y,ze@: If x £ Y, then x+# < y+2

(3) For all X, y,2e((: IF2=0amdX < ) then X2 < y. 2

(4) Total order: For all % €®, we have X < Y or Yy < X,

(5) Archimedean property: For all X, ¢ €® with  X>0 and € >0,

we have: e N,: € —€+E+E+ - +4E > X

i —t : % >
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g~> Real numbers R

Starting point: @ is the set of fractions ~—> field and Archimedean order <
X>0 , X<O0

| >
Absolute value: For xe () define: |X| — X if X=0
-x if X<0

+]x] +1x]

YVl

\4

How far away is X from O 1 ~> |x|

Problem: There is no xe& ) with )(1 =

R

X, = dif —~> X =l
O;t:—m:l Xy = oo N> X = e #

e = 7 K = e B

X =L ~> X =1

We consider a seguence (Xh)hem (infinite list; formally: a map [N —Q ; h = x,,)

with The property:

Vee@ 3ANEN VYomel : (£>O A nm2=N =>|xy,—xh,|<e)

In short: VE_> 0 AdNeN VY‘,W‘ >N : |xh_x|-|<€ (X)

e .—.—k’—ﬂm-) >
X1 Xl —y—
€

Cauchy sequence: segquence (x“)nem with  %X,€ Q and propertly ()K)
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Absolute value in @ ; |x>/| = ‘xllyl (multiplicative)

|x+>/| < x|+ Iyl (triangle inequality)

Cauchy seguence: (x"‘)helN with V€> 0 ENQN \V/n,m >N : |Xh—Xh|< £

Convergent sequence: (theN with 30\6@ V€> 0 E\NQN \V/h P N : |X‘,,— QA |<€

A is called the limit of (XQ

he N

€ neighbourhood of &

lilllhnul-l\

I | ‘ i 1 (|||IIIIIIIIII/ >
Xy Xy a-c¢ Ky o a+E
Example: (1—) is a convergent sequence with limit &« =0
————B h ne N q q’ - *
Important fact: Cauchy segquence <::"V Convergent sequence
not correct ( but in IR
triangle
-F -F inequality
Proof for &= xh_xv-n| :lxh_a\+°‘_xw| < lx,,—-a\|+|0~—><,,,|
Let (x")thlN be a convergent sequence with limit o .
Let €> 0. Set E\::%>O.
Since (X,DhQN is convergent, There is Ne N such that:
Yn>N: |x,—al|<e
Therefore for all nm> N :
)
Ky — xvm| é lxn_a\| + IO‘_ xlm| <l g = € :> (Xh)hgm Cationy
o~ N seguence
<g <&

Axiomatic solution:

A non—empty set [R together with operations <+ , + and ordering <

is called the real numbers if it satisfies:

(A) (rR/ ul O) is an abelian group

(M) ([’R\iO% , 1) is an abelian group ('fi())
(D) distributive law x-()u- 1) = Xy + X2

(0) £ is a total order, compatible with + and * , Archimedean property

: i >
(C) Every Cauchy sequence is a convergent sequence, |x|:= é; X if X=0
=X if X< 0

.
7
The complete, whole, full number line IR
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N
7

complete number line R

Axioms of the reals: A non—empty set R together with operations 4, . and ordering <

is called the real numbers if it satisfies:

(A) (I/R( + O) is an abelian group

(M) (['R\iO]g , ']) is an abelian group (1#0)

(D) distributive law X-(Y+ T) = Xy + X2

(0) < is a total order, compatible with + and * , Archimedean property

X if X220

(C) Every Cauchy sequence is a convergent sequence, |X| ::i
X if X<0

Important facts: There is a set with all these properties  (Existence) (Construction)

see next video

(Identification/

and it is uniquely determined by these properties,

(Unigueness) Isomor phism)
Show: For all xe R, we have: O+ x = () (X) (by only using the axioms).
Prooft: (A)
ot 020 %)+ (-0-x) = ((0+0)X) +(=0-x)
(D)
(O X + 0O X) + (—O X)
(A) (A)
— (O X +(—O XD O-x + O = O- x
associativity inver se heutra
Show:  For all xe R , we have: (— ’D X = =% (by only using the axioms),
Proof: (A) () (A)
roo “x = 0 + (-x) = 0 x + (%) =((-D+1)x + (-%)
(D)

(A)

(—4)-x+ O = (1) x

neutral

ll"

= (Nex +4ox + ()
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Construction: @ N> [R (Make every Cauchy sequence convergent)
1 N
: °
0 1 -
3 number line

Segquence: 17 ) 13- f is- ) %, 13- ) I) ~-3 Cauchy sequence and convergent with limit -%

Segquence: (03 | 0.33 0.33% , 7/\/\> Cauchy sequence and convergent with \imi’r%

3 33 333
10 100 1600

t e i(x“)hem \ VV\Q‘N  X,€ @ and (x"‘)hem is a Cauchy seq,uenoe}

For Two elements (G\“)nen\] , (L")nem’ define:

(G\“)nem ~ (L“)hem = (o\“— L")nelt\] convergent with limit 0

=> ~v is an eguivalence relation on t (reflexive, symmetric, transitive)

=> equivalence class ll(x".)helN ::i(m")helt\]

=

Definition: [, ﬁ/N = {;(x,,)mml\l \ (Xndery € ﬁ}

(&“)he N ™ (X‘")he N

I;(O\")"G'N}N + l;(L")"e'Ni\,\, = BO\“—‘—L")MN] (well—defined)

Y

|;(O\“)h€lN:lN . [(L,,)mm} = l;(O\,,- L")NN]N (well—defined)

Y

l;(O\“)helNilN < [(Lh)nenq]/\l = 3§5>0 ANeN Yn=N: S<b,-a,

K ~ \
—lor PP o s =
0 4 Oy .
3 number line

Properties: (A) (R( ul O) is an abelian group

(M) (R\EO% , ’]) is an abelian group (1‘«‘0)

(D) distributive law X'()I'I‘ 1) = Xy + X2

(0) £ is a total order, compatible with + and * , Archimedean property

X if X220

(C) Every Cauchy sequence is a convergent sequence., || ::{
X if X<0
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Number line [R . - -
-1 0 TR

— field +

_p)u ®

N
7

- OVOleViV]q < (Archimedean, compatible with+ and: ,.)

— complete

One can solve a lot of eguations:

X+5 =1, X+x=-1

Xs =1
=7
We cannot solve: \,Y)il = -1 (because > 0 for all xeR and -1<0)
XX
-1
Py P\ m\. >
- 0 2 RO ‘r R
X (-1) L1='4
X L .x
o 0 - o N
4 [0 1 -
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oo RxR =R

+ addition
- mulfiplication

x4+y4)
Xy + Y%

‘__.5_\.
V

()

1

\

Multiplication: For (1‘1),<>;)€ IRX \R, we sef: (i‘) .

(%

(1) = (e
N ReYa ¥ X Ve

Why?

O L] L]
Short notation: (i‘) =: X, + LX, , <1) = 0+11 =1
1

Calculation:

Check: Ll

Properties:

field

we want

distributivity we want //_1

(X4 + L'XL)' ()’1 + L’)’L = XY + .L'XL')’q + i""4'}’1. + Lz- X'L'yt

= (X.-‘/. - Xy )’Q + U (xt-)q + xq-yl]

(M) (5D () s <

1
we write = IR when we have +and <from above,

(([: , + ) O> is an abelian group (commutative, associative, neutral element, inverses)
\NY
~0+i0

(([:\EO}/ o , /] ) is an abelian group (commutative, associative, neutral element, inverses)
N1 +i0

distributive law

no nice ordering < like tor R
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Xa

2= X+ UX, €

N \ 1

real part of Z imaginary part of 2 ) .
'Re(Z) Im(i) length, absolute value, modulus
| 2 2
12| = 'Re,(z) + Im(z) € R
Reflection: “ e

complex conjugate £ ix
Z = Xt LKy

X,~
Z =X+ (%) = x, - L X,
2
Caloulate: z-z :<X1 + L'XL>- (X1 — L-XL>
= X}+ X (=1 %)+ L Xy Xy - K x’;
1
= X, % =le|
Polar coordinates: XN 2 length: | 2]
‘?S - angle: \FG [O,Z'ﬁ’)
X1
h X
OCC Toan| — ,X1>O, X, >0
A4
o _
oy ; X4y = 0 , X.>0
argument of 2: \FZ X
acc a\h(—twﬁ‘r , X,< 0
:
i _
1 ) %= 0, X.<0

Xy
\ye om(TerZ',\r ; X,>0 X, < 0

1

2= X, + UX, = \'tl-(@s(@ + L-Sih(@)

N

Example: 2=3+13 , 72=23-13, 2% = 3+9 =18
|

= |Z| = ‘JT = 3-{7 / ‘f): O\FC{'O\V\(%) = 'q’

later L

= 2 =34¢- (cos(%) + L-Sin(%}) = 37 "¢



