• Title: Integration by Substitution

  • Series: Real Analysis

  • Chapter: Riemann Integral

  • YouTube-Title: Real Analysis 57 | Integration by Substitution

  • Bright video: Watch on YouTube

  • Dark video: Watch on YouTube

  • Ad-free video: Watch Vimeo video

  • Original video for YT-Members (bright): Watch on YouTube

  • Original video for YT-Members (dark): Watch on YouTube

  • Forum: Ask a question in Mattermost

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Exercise Download PDF sheets

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: ra57_sub_eng.srt missing

  • Download bright video: Link on Vimeo

  • Download dark video: Link on Vimeo

  • Related videos:

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $f,\phi: \mathbb{R} \rightarrow \mathbb{R}$ be two continuously differentiable functions. What is the correct substitution rule?

    A1: $ \displaystyle \int_a^b f(x) dx $ $ \displaystyle= \int_{\phi(a)}^{\phi(b)} f(t) dt $

    A2: $ \displaystyle \int_{\phi(a)}^{\phi(b)} f(x) dx $ $ \displaystyle = \int_{\phi(a)}^{\phi(b)} f(t) dt $

    A3: $ \displaystyle \int_{\phi(a)}^{\phi(b)} f(x) dx $ $ \displaystyle = \int_{a}^{b} f(t) \phi^\prime(t) dt $

    A4: $ \displaystyle \int_{\phi(a)}^{\phi(b)} f(x) dx $ $ \displaystyle = \int_{a}^{b} f(\phi(t)) \phi^\prime(t) dt $

    A5: $ \displaystyle \int_{\phi(a)}^{\phi(b)} f(x) dx $ $ \displaystyle = \int_{a}^{b} f(\phi(t)) dt $

    Q2: What is the antiderivative of the function $f:\mathbb{R} \rightarrow \mathbb{R}$ given by $$f(t) = t^4 \cos(t^5),.$$

    A1: $ \displaystyle \sin(t) $

    A2: $ \displaystyle -\frac{1}{5} \sin(t^5) $

    A3: $ \displaystyle \frac{1}{5} \cos(t^5) $

    A4: $ \displaystyle \frac{1}{5} \sin(t^5) $

    Q3: What is the integral $ \displaystyle \int_0^1 t \exp(t^2) , dt$?

    A1: $0$

    A2: $\frac{1}{2} e - 1$

    A3: $\frac{1}{2} (e - 1)$

    A4: $\frac{1}{2} (e - 2)$

    A5: $\frac{1}{3} (e - 1)$

  • Last update: 2025-09

  • Back to overview page


Do you search for another mathematical topic?