ON STEADY

The Bright Side of Mathematics

sequence of functions: $(f_1, f_2, f_3, f_4, f_5, ...)$ $f_n: I \longrightarrow \mathbb{R}$, $f: I \longrightarrow \mathbb{R}$

Uniform convergence means: $\|f_n - f\|_{\infty} \xrightarrow{n \to \infty} 0$

Fact:
$$f_n$$
 continuous and $\|f_n - f\|_{\infty} \xrightarrow{n \to \infty} 0 \implies f$ continuous

Theorem: Let
$$(f_1, f_2, f_3, f_4, f_5, ...)$$
 be a sequence of functions $f_n : I \to \mathbb{R}$.
Assume: $(f_h)_{h \in \mathbb{N}}$ is pointwisely convergent to a function $f : I \to \mathbb{R}$
 $f_n : I \to \mathbb{R}$ differentiable for all $h \in \mathbb{N}$
 \cdot There is $g : I \to \mathbb{R}$ with $\|f_h - g\|_{\infty} \xrightarrow{n \to \infty} 0$
Then: $\|f_n - f\|_{\infty} \xrightarrow{n \to \infty} 0$ and f differentiable with $f' = g$.

$$\frac{\text{Proof:}}{\text{For any } \mathcal{E} > 0:} \qquad \left| \frac{f(x) - f(x_0)}{x - x_0} - g(x_0) \right| \leq \left| \frac{f(x) - f(x_0)}{x - x_0} - \frac{f_n(x) - f_n(x_0)}{x - x_0} \right| + \left| \frac{f_n(x) - f_n(x_0)}{x - x_0} - f_n(x_0) \right| \\ = \left| \frac{f(x) - f(x_0)}{x - x_0} - g(x_0) \right| \\ = \left| \frac{f(x) - f(x) - f(x_0)}{x - x_0} - g(x_0) \right| \\ = \left| \frac{f(x) - f(x) - f(x) - f(x_0)}{x - x_0} - g(x_0) \right| \\ = \left| \frac{f(x) - f(x) - f(x_0)$$