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compact => compact

Theorem: | < R compact, )Ci T— R continuous.
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Then: ﬂ:ﬂ <R s compact (= bounded + closed)
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Proof: Compact means: every sequence has a convergent subsequence,

Let (thnem < 5[1] be a sequence,

For each vy, there is x,¢ I with jf(xh) = Y. = New sequence (xh)hem c T

T compact
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So (Y"Dkem is convergent with limit Y€ ﬂ:ﬂ => ﬂ:l] compact



