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Z a, is called absolutely convergent if Z|0\k| is convergent,
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Counterexample: Z(— 1) ik is convergent but not absolutely convergent
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Majorant criterion Let Z a, be a series,
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1f fhere is n,eN and a convergent series ZL’k with [)ké 0
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and with la,| < L’k for all k >n,, then ais abs, convergent,
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Proot: Apply Cauchy criterion to Z b, :
k=1

V€>O HNého VY =m=N : Zlo\kl < ZLk =
k=m

k=m

h

Pl

k=m

< &

oQ
Minorant criterion Let Z a, be a series with a, = 0.
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1f there is helN and a divergent series Z by with b >0
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and with a, > Lk for all k>n,, then Z a, is divergent,
k=1
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Example: ij I.T—? is divergent because W < k S = =2 for all k=>4
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and Z T is divergent
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