

ON STEADY

The Bright Side of Mathematics

Real Analysis - Part 14

Example: (a) \emptyset is compact. (b) $\{5\}$ is compact. (c) \mathbb{R} is not compact. $(a_n)_{n \in \mathbb{N}} = (n)_{n \in \mathbb{N}}$ has no accumulation value $a \in \mathbb{R}$ (d) [c, d], $c \leq d$, compact set. Let $(a_n)_{n \in \mathbb{N}} \subseteq [c, d] \implies (a_n)_{n \in \mathbb{N}}$ is bounded Bolzano-Weierstrass theorem \Longrightarrow $(a_n)_{n \in \mathbb{N}}$ has an accumulation value $a \in \mathbb{R}$ [c, d] closed \Longrightarrow accumulation value actually satisfies $a \in [c, d]$

Heine-Borel theorem For $A \subseteq \mathbb{R}$, we have:

A is compact $\langle = \rangle$ A is bounded and closed

<u>Proof:</u> (\Leftarrow) Do the same as before with Bolzano-Weierstrass theorem. (\Rightarrow) Assume A is compact. Let $(a_n)_{n \in \mathbb{N}} \subseteq A$ be a convergent sequence with limit $\tilde{a} \in \mathbb{R}$. A is compact \Rightarrow $(a_n)_{n \in \mathbb{N}}$ has an accumulation value $a \in A$. only one acc, value \Rightarrow $\tilde{a} = a \in A$ \Rightarrow A is closed. Assume A is not bounded. \Rightarrow There is a sequence $(a_n)_{n \in \mathbb{N}} \subseteq A$ with $|a_n| > h$ for all $\in \mathbb{N}$. \Rightarrow no accumulation value \Rightarrow A is not compact.