

- [-2,2] is closed but not open.
- (-2, 2) is open but not closed.
- (-2, 2] is neither open nor closed.

Fact: $A \subseteq \mathbb{R}$ is closed \iff For all convergent sequences $(a_n)_{n \in \mathbb{N}}$ with $a_n \in A$ for all $n \in \mathbb{N}$, we have: $\lim_{n \to \infty} a_n \in A$

<u>Definition</u>: $A \subseteq \mathbb{R}$ is called <u>compact</u> if for all sequences $(a_n)_{n \in \mathbb{N}}$ with $a_n \in A$ for all $n \in \mathbb{N}$, there is a convergent subsequence $(a_{n_k})_{k \in \mathbb{N}}$ with $\lim_{k \to \infty} a_{n_k} \in A$.