

Two cases: (1)
$$C_{4}$$
 is an upper bound for M : $b_{2} := C_{1}$, $a_{2} := a_{1}$
(2) C_{4} is not an upper bound for M : $\exists x \in M : x > C_{4}$
 $a_{2} := x$, $b_{2} := b_{1}$
 $C_{n} := \frac{4}{2}(a_{n} + b_{n})$
Two cases: (1) C_{n} is an upper bound for M : $b_{n-4} := C_{n-1}$, $a_{n+1} := a_{n}$
(2) C_{n} is not an upper bound for M : $\exists x \in M : x > C_{n}$
 $a_{n+1} := x$, $b_{n-1} := b_{n}$
For $m > n$: $|b_{n} - b_{m}| \le |b_{n} - a_{n}| \le (\frac{1}{2})^{-1} |b_{4} - a_{1}|$
 $\Longrightarrow (b_{n})_{h \in \mathbb{N}}$ is a Cauchy sequence
 $\Rightarrow (b_{n})_{h \in \mathbb{N}}$ is a convergent sequence with limit $\sup M$
Important application: If $(a_{n})_{n \in \mathbb{N}}$ is monotonically decreasing $(a_{n+4} \le a_{n} \text{ for all } n)$
and bounded from below (the set $\{a_{n}\}_{n \in \mathbb{N}}$ has a lower bound)
then: $(a_{n})_{n \in \mathbb{N}}$ is convergent.