ON STEADY

Example:

<

The Bright Side of Mathematics

$$= \sum_{\substack{h \to \infty \\ h \to \infty}} \left(a_n + b_n \right) = \lim_{\substack{h \to \infty \\ h \to \infty}} a_n + \lim_{\substack{h \to \infty \\ h \to \infty}} b_n , \quad \lim_{\substack{h \to \infty \\ h \to \infty}} \left(a_n \cdot b_n \right) = \lim_{\substack{h \to \infty \\ h \to \infty}} a_n \cdot \lim_{\substack{h \to \infty \\ h \to \infty}} b_n$$
In particular: $\lim_{\substack{h \to \infty \\ h \to \infty}} \left(a_n \cdot b_n \right) = a \cdot \lim_{\substack{h \to \infty \\ h \to \infty}} \left(b_n \right)$

particular:
$$\lim_{h \to \infty} (a \cdot b_n) = a \cdot \lim_{h \to \infty} (b_n)$$

 $(A_n)_{n \in \mathbb{N}}$, $(b_n)_{n \in \mathbb{N}}$ convergent sequences.

(b) Sandwich theorem:
$$a_n \leq C_n \leq b_n$$
 for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$
 $\Longrightarrow (C_n)_{n \in \mathbb{N}}$ convergent with $\lim_{n \to \infty} C_n = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$

Proof of (b):
$$(b_n - a_n) \xrightarrow{h \to \infty} \lim_{n \to \infty} a_n - \lim_{n \to \infty} b_n = 0$$
 (by the limit theorems)
 $d_n := c_n - a_n \implies 0 \le d_n \le b_n - a_n$

Let
$$\varepsilon > 0$$
. Then there is $N \in \mathbb{N}$ with: $\forall n \ge N : |b_n - a_n| < \varepsilon$
 $|d_n - 0|^{\checkmark}$
 $\Rightarrow (d_n)_{n \in \mathbb{N}}$ is convergent with limit 0

limit theorems
 $\Rightarrow (C_n)_{n \in \mathbb{N}} = (d_n + a_n)_{n \in \mathbb{N}}$ is convergent with limit a

sequence $(C_n)_{n \in \mathbb{N}}$ given by $C_n = \sqrt{n^2 + 1} - n$ convergent?
 $= (\sqrt{n^2 + 1} - n) \cdot \frac{(\sqrt{n^2 + 1} + n)}{\sqrt{n^2 + 1} + n}$
 $= \frac{n^2 + 1 - n^2}{\sqrt{n^2 + 1} + n} = \frac{1}{\sqrt{n^2 + 1} + n} \le \frac{1}{n}$

$$\implies 0 \le C_n \le \frac{1}{n} \quad \text{for all} \quad n \in \mathbb{N} \quad \implies \lim_{h \to \infty} C_n = 0$$