ON STEADY

Real Analysis - Part 5

$$
(\alpha_n)_{n\in\mathbb{N}}, (\beta_n)_{n\in\mathbb{N}} \text{ convergent sequences.}
$$
\n
$$
\Rightarrow \lim_{n\to\infty} (\alpha_n + b_n) = \lim_{n\to\infty} \alpha_n + \lim_{n\to\infty} b_n, \lim_{n\to\infty} (\alpha_n \cdot b_n) = \lim_{n\to\infty} \alpha_n \cdot \lim_{n\to\infty} b_n
$$
\nIn particular:
$$
\lim_{n\to\infty} (\alpha \cdot b_n) = \alpha \cdot \lim_{n\to\infty} (b_n)
$$

Properties:	$(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ convergent sequences.	\bullet	\bullet
(a) Monotonicity:	$a_n \leq b_n$ for all $n \in \mathbb{N}$	\bullet	\bullet
\Rightarrow $\lim_{n\to\infty} a_n \leq \lim_{n\to\infty} b_n$	\dots		

(b) Sandwich theorem:
$$
a_n \le C_n \le b_n
$$
 for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$
\n $\Rightarrow (C_n)_{n \in \mathbb{N}}$ convergent with $\lim_{n \to \infty} C_n = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$

Proof of (b):
$$
(b_n - a_n) \xrightarrow{h \to \infty} \lim_{n \to \infty} a_n - \lim_{n \to \infty} b_n = 0
$$
 (by the limit theorems)
 $d_n := C_n - a_n \implies 0 \le d_n \le b_n - a_n$

Let
$$
\varepsilon > 0
$$
. Then there is $N \in \mathbb{N}$ with: $\nabla n \ge N : |b_n - a_n| < \varepsilon$
\n
$$
|d_n - 0| \n\le M
$$
\n
$$
\Rightarrow (d_n)_{n \in \mathbb{N}}
$$
 is convergent with limit 0
\n
$$
\Rightarrow (C_n)_{n \in \mathbb{N}} = (d_n + a_n)_{n \in \mathbb{N}}
$$
 is convergent with limit a
\nsequence $(C_n)_{n \in \mathbb{N}}$ given by $C_n = \sqrt{n^2 + 1} - n$ convergent?
\n
$$
= (\sqrt{n^2 + 1} - n) \cdot \frac{(\sqrt{n^2 + 1} + n)}{\sqrt{n^2 + 1} + n}
$$
\n
$$
= \frac{n^2 + 1 - n^2}{\sqrt{n^2 + 1} + n} = \frac{1}{\sqrt{n^2 + 1} + n} \le \frac{1}{n}
$$

Example:

The Bright Side of Mathematics

 \Box

$$
\implies 0 \leq C_n \leq \frac{1}{n} \quad \text{for all} \quad \text{new} \quad \implies \lim_{\text{sandwich}} C_n = 0
$$