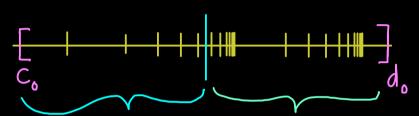


Real Analysis - Part 10

Bolzano-Weierstrass theorem

 $(\alpha_n)_{n \in \mathbb{N}}$ bounded $\implies (\alpha_n)_{n \in \mathbb{N}}$ has an accumulation value (has a convergent subsequence)

Proof:



If infinitely many sequence members in it: Choose left-hand interval

Otherwise: Choose right-hand interval

New interval: $\begin{bmatrix} | | | | \\ | | | \\ | | | \end{bmatrix}$

We get: $\left[c_0, d_0\right] \supset \left[c_1, d_1\right] \supset \left[c_2, d_1\right] \supset \left[c_3, d_3\right] \supset \dots$

And: $d_1 - c_1 = \frac{1}{2} (d_0 - c_0)$, $d_2 - c_2 = \frac{1}{2} (d_1 - c_1) = \frac{1}{4} (d_0 - c_0)$, ... $d_n - c_n = \frac{1}{2^n} (d_0 - c_0) \xrightarrow{n \to \infty} 0$

We know: $(C_n)_{n \in \mathbb{N}}$ mon. increasing and bounded $\} = > (C_n)_{n \in \mathbb{N}} / (A_n)_{n \in \mathbb{N}}$ convergent

By limit theorems: $0 = \lim_{n \to \infty} (d_n - c_n) = \lim_{n \to \infty} d_n - \lim_{n \to \infty} c_n$

Define a subsequence $(a_{n_k})_{k \in \mathbb{N}}$ by choosing $a_{n_k} \in [c_k, d_k]$

$$\Rightarrow$$
 $c_k \leq a_{n_k} \leq d_k$

Sandwich theorem $(\alpha_{n_k})_{k \in \mathbb{N}}$ is convergent