Bolzano-Weierstrass Theorem

Next we present the famous Theorem of Bolzano-Weierstraß.

Theorem 1. Theorem of Bolzano-Weierstraß

Let $(a_n)_{n\in\mathbb{N}}$ be a bounded sequence in \mathbb{R} . Then there exists some convergent subsequence $(a_{n_k})_{k\in\mathbb{N}}$.

Proof: Since $(a_n)_{n \in \mathbb{N}}$ is bounded, there exist some $A, B \in \mathbb{R}$ such that for all $n \in \mathbb{N}$ holds $A \leq a_n \leq B$. We will now successively construct subintervals $[A_n, B_n] \subset [A, B]$ which still include infinitely many sequence elements of $(a_n)_{n \in \mathbb{N}}$.

Inductively define $A_0 = A$, $B_0 = B$ and for $k \ge 1$,

- a) $A_k = A_{k-1}, B_k = \frac{A_{k-1}+B_{k-1}}{2}$, if the interval $[A_{k-1}, \frac{A_{k-1}+B_{k-1}}{2}]$ contains infinitely many sequence elements of $(a_n)_{n \in \mathbb{N}}$, and
- b) $A_k = \frac{A_{k-1} + B_{k-1}}{2}, B_k = B_{k-1}$, else.

By the construction of A_k and B_k , we have that each interval $[A_k, B_k]$ has infinitely many sequence elements of $(a_n)_{n \in \mathbb{N}}$. We furthermore have $B_1 - A_1 = \frac{1}{2}(B - A)$, $B_2 - A_2 = \frac{1}{4}(B - A)$, ..., $B_k - A_k = \frac{1}{2^k}(B - A)$. Moreover, the sequence $(A_n)_{n \in \mathbb{N}}$ is monotonically increasing and bounded from above by B, i.e., it is convergent by the Theorem about bounded monotonic sequences. The relation $B_k - A_k = \frac{1}{2^k}(B - A)$ moreover implies that $(B_n)_{n \in \mathbb{N}}$ is also convergent and has the same limit as $(A_n)_{n \in \mathbb{N}}$. Denote

$$a = \lim_{n \to \infty} A_n = \lim_{n \to \infty} B_n.$$

Define a subsequence $(a_{n_k})_{k\in\mathbb{N}}$ by $n_1 = 1$ and n_k with $n_k > n_{k-1}$ and $a_{n_k} \in [A_k, B_k]$ (which is possible since $[A_k, B_k]$ contains infinitely many elements of $(a_n)_{n\in\mathbb{N}}$). Then $A_k \leq a_{n_k} \leq B_k$. The Theorem about monotonic sequences then implies that

$$a = \lim_{k \to \infty} a_{n_k}.$$

Exercise 2.

A sequence (a_n) is called periodic if there is $p \in \mathbb{N}$ such that $\forall n \in \mathbb{N} : a_n = a_{n+p}$. The smallest p such that the above equation holds is called period of the sequence (a_n) . For $\alpha \in \mathbb{R}$ consider the sequence given by $a_n := \sin(\alpha \pi n)$.

- 1. Prove that (a_n) is periodic if and only if $\alpha \in \mathbb{Q}$. Hint: $\sin(x) = \sin(y) \neq 0 \Leftrightarrow x = y + 2k\pi$ and $\sin(x) = 0 \Leftrightarrow x = k\pi$ for some $k \in \mathbb{Z}$
- 2. For $\alpha = \frac{2}{3}$ find a converging subsequence.
- 3. For $\alpha = \frac{4}{5}$ determine the period of (a_n) .
- 4. For $\alpha = \frac{1}{2}$ find all limit points of (a_n) .

Exercise 3.

We consider the metric space $M := \mathbb{R}^2$ equipped with a metric d defined for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^2$ by $d(\mathbf{x}, \mathbf{y}) := \|\mathbf{x} - \mathbf{y}\|$ where $(\mathbf{x} = (x_1, x_2) \in \mathbb{R}^2) \|\mathbf{x}\| := \sqrt{x_1^2 + x_2^2}$ is the standard euclidean metric. Prove the Theorem of Bolzano-Weierstraß for bounded sequences (\mathbf{x}_n) in \mathbb{R}^2 . So if (\mathbf{x}_n) in \mathbb{R}^2 is a bounded sequence then there is a convergent subsequence (\mathbf{x}_{n_k}) .