Subsequences and Accumulation Values

Definition 1. Subsequence

Let $(a_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{F} . Let $(n_k)_{k\in\mathbb{N}}$ be a strongly monotonically increasing sequence with $n_k \in \mathbb{N}$ for all $k \in \mathbb{N}$. Then $(a_{n_k})_{k\in\mathbb{N}}$ is called a subsequence.

 $a_1 \ a_2 \ a_3 \ a_4 \ a_5 \ a_6 \ a_7 \ a_8 \ a_9 \ a_{10}$ $a_{n_1} \ a_{n_2} \ a_{n_3} \ a_{n_4} \ a_{n_5} \ a_{n_6}$

Example 2. Consider the sequence $(a_n)_{n \in \mathbb{N}} = (\frac{1}{n})_{n \in \mathbb{N}}$. Then some subsequences are given by

• $(a_{n_k})_{k\in\mathbb{N}} = (a_{2k})_{k\in\mathbb{N}} = (\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \frac{1}{8}, \ldots);$

- $(a_{n_k})_{k\in\mathbb{N}} = (a_{k^2})_{k\in\mathbb{N}} = (1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \frac{1}{25}, \ldots);$
- $(a_{n_k})_{k\in\mathbb{N}} = (a_{2^k})_{k\in\mathbb{N}} = (\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \ldots);$
- $(a_{n_k})_{k \in \mathbb{N}} = (a_{k!})_{k \in \mathbb{N}} = (1, \frac{1}{2}, \frac{1}{6}, \frac{1}{24}, \frac{1}{120}, \frac{1}{720}, \ldots).$

Theorem 3. Convergence of subsequences

Let $(a_n)_{n\in\mathbb{N}}$ be a convergent sequence in \mathbb{F} with $\lim_{n\to\infty} a_n = a$. Then all subsequences $(a_{n_k})_{k\in\mathbb{N}}$ of $(a_n)_{n\in\mathbb{N}}$ are also convergent with

$$\lim_{k \to \infty} a_{n_k} = a_k$$

Proof: Since $1 \leq n_1 < n_2 < n_3 < \ldots$ and $n_k \in \mathbb{N}$ for all $k \in \mathbb{N}$, we have that $n_k \geq k$ for all $k \in \mathbb{N}$. Let $\varepsilon > 0$. By the convergence of $(a_n)_{n \in \mathbb{N}}$, there exists some N such that $|a_k - a| < \varepsilon$ for all $k \geq N$. Due to $n_k \geq k$, we thus also have that $|a_{n_k} - a| < \varepsilon$ for all $k \geq N$. \Box

Attention!

The existence of a convergent subsequence $(a_{n_k})_{k\in\mathbb{N}}$ does in general <u>not</u> imply the convergence of $(a_n)_{n\in\mathbb{N}}$. For instance, consider $(a_n)_{n\in\mathbb{N}} = ((-1)^n)_{n\in\mathbb{N}}$. Both subsequences

$$(a_{2k})_{k\in\mathbb{N}} = ((-1)^{2k})_{k\in\mathbb{N}} = (1, 1, 1, 1, ...)$$

$$a_{2k+1})_{k\in\mathbb{N}} = ((-1)^{2k+1})_{k\in\mathbb{N}} = (-1, -1, -1, -1, ...)$$

are convergent though $(a_n)_{n \in \mathbb{N}} = ((-1)^n)_{n \in \mathbb{N}}$ is divergent.

However, we can "rescue" this statement by additionally claiming that $(a_n)_{n \in \mathbb{N}}$ is monotonic.

Theorem 4. Subsequences of monotonic sequences

Let $(a_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{R} . If $(a_n)_{n\in\mathbb{N}}$ is monotonic and there exists a convergent

subsequence $(a_{n_k})_{k\in\mathbb{N}}$, then $(a_n)_{n\in\mathbb{N}}$ is convergent with

$$\lim_{n \to \infty} a_n = \lim_{k \to \infty} a_{n_k}$$

Proof: Denote $a = \lim_{k\to\infty} a_{n_k}$. We just consider the case where $(a_n)_{n\in\mathbb{N}}$ is monotonically increasing (the remaining part can be done analogously to the argumentations at the end of the proof of Theorem about bounded sequences). Since $(a_{n_k})_{k\in\mathbb{N}}$ is also monotonically increasing, we have that $a = \sup\{a_{n_k} : k \in \mathbb{N}\}$.

Let $\varepsilon > 0$. Due to the convergence and monotonicity of $(a_{n_k})_{k \in \mathbb{N}}$, there exists some $K \in \mathbb{N}$ such that for all $k \geq K$ holds

$$a - \varepsilon < a_{n_k} \le a.$$

Now assume that $n \ge N = n_K$. Monotonicity then implies that $a - \varepsilon < a_{n_K} \le a_n \le a_{n_n} \le a$. In particular, we have that

$$|a - a_n| = a - a_n < \varepsilon.$$

Definition 5. Accumulation value

Let $(a_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{R} . Then $a \in \mathbb{R}$ is called <u>accumulation value</u> if there exists some subsequence $(a_{n_k})_{k\in\mathbb{N}}$ with

$$a = \lim_{k \to \infty} a_{n_k}.$$

Attention! Names

Accumulation values are often called by other names, like accumulation points, limits points or cluster points.

Proposition 6.

 $a \in \mathbb{R}$ is an accumulation value if and only if in every ε -neighbourhood of a, there are infinitely many elements of the sequence $(a_n)_{n \in \mathbb{N}}$.

Definition 7. Accumulation values $\pm \infty$

A real sequence $(a_n)_{n \in \mathbb{N}}$ is said to have the <u>(improper)</u> accumulation value ∞ if it is not bounded from above. Analogously, we define the <u>(improper)</u> accumulation value $-\infty$ if it is not bounded from below.

Exercise 8.

Determine all accumulation values of the following sequences:

(a)
$$a_n := \left(1 + \frac{1}{n}\right)^{n+5}$$

(b) $b_n := \left(\frac{3}{2}\right)^{(-1)^n \cdot n}$
(c) $c_n := \begin{cases} 0 & n \text{ is odd} \\ \frac{n!}{(n+1)!} & n \text{ is even} \end{cases}$

2

(d)
$$d_n := (-3)^n + (1 + (-1)^{3n}) \left(2 + \frac{(-1)^{4n}}{n^2}\right)$$