• Title: Covariance and Correlation

  • Series: Probability Theory

  • YouTube-Title: Probability Theory 19 | Covariance and Correlation

  • Bright video: https://youtu.be/0XvJ6NOemEU

  • Dark video: https://youtu.be/zbEFOPUbsTs

  • Ad-free video: Watch Vimeo video

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: pt19_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $X \colon \Omega \rightarrow \mathbb{R}$ be a random variable. What is the covariance $\mathrm{Cov}(X, X^2)$?

    A1: $\mathbf{E}(X^3) - \mathbf{E}(X^2)\mathbf{E}(X)$

    A2: $\mathbf{E}(X^2) - \mathbf{E}(X)\mathbf{E}(X^4)$

    A3: $\mathbf{E}(X^2) - \mathbf{E}(X)\mathbf{E}(X^2)$

    A4: $\mathrm{Var}(X) - \mathbf{E}(X)^2$

    Q2: Let $X, Y$ be two random variables with $\mathrm{Cov}(X,Y) = 1$. Can they be independent?

    A1: No, never!

    A2: Yes, always!

    A3: There are examples such that they are independent but in general they are not.

    Q3: Let $X,Y$ be normally distributed with $\mathrm{Cov}(X,Y) = 0$. What is correct?

    A1: $X,Y$ are independent.

    A2: $X,Y$ are not independent.

    A3: The correlation coefficient is 1.

  • Last update: 2024-10

  • Back to overview page


Do you search for another mathematical topic?