

(1) expectation should be zero: $\overline{X}_n - \mu$ (2) variance should be one: $(\overline{X}_n - \mu)/(\frac{p}{\sqrt{n}})$

<u>Central limit theorem</u>: For $(X_k)_{k \in \mathbb{N}}$ i.i.d. with $\operatorname{Var}(X_1) < \infty$, define: $Y_n := \left(\frac{1}{n} \sum_{k=1}^n X_k - \mu\right) \cdot \left(\frac{r}{\sqrt{n}}\right)^{-1}$ where $\mu := \mathbb{E}(X_1)$, $\operatorname{Fier}(X_1)^{-1}$

Then the cdf of Y_n converges to the cdf of Normal(0,1²) :

$$\mathbb{P}(Y_{n} \leq x) \xrightarrow{n \to \infty} \Phi(x) \quad \text{for every } x \in \mathbb{R}$$

$$\sqrt[N]{\frac{1}{\sqrt{2n'}}} \int_{-\infty}^{x} e^{-\frac{1}{2}t^{1}} dt$$