BECOME A MEMBER

board game:

coin game:

Example from before:

ON STEADY

The Bright Side of Mathematics

• "random variables in a row" Stochastic processes:

Probability Theory - Part 23

· random experiment with time evolution (discrete timesteps, continuous time)

toss a coin again and again until two successive heads occur

in the first **n** tosses

 $\frac{\chi_{n}: \left\{ A, \right\}^{N} \longrightarrow \left\{ 0, 1, 2 \right\}}{1 + 1}$ no two successive heads in the first 10 the discrete time two successive heads in the first **h** tosses and nth toss is "tails"

<u>Definition</u>: \top set (often $\top = \mathbb{N} , \top = \mathbb{Z} , \top = \mathbb{R})$. For each $t \in T$, define: $X_t: \Omega \longrightarrow \mathbb{R}$ (random variable/vector) Then: $(X_t)_{t \in T}$ is called a stochastic process.

no two successive heads

and nth toss is "heads"

in the first n tosses

For $\omega \in \Omega$: the map $T \longrightarrow \mathbb{R}$ is called <u>path</u>. $t \longmapsto X_t(\omega)$

 $\chi_{\mathbf{n}}: \left\{ A, \mathbf{n} \right\}^{\mathbf{N}} \longrightarrow \left\{ 0, 1, 2 \right\}$