The Bright Side of Mathematics

The following pages cover the whole Probability Theory course of the
Bright Side of Mathematics. Please note that the creator lives from
generous supporters and would be very happy about a donation. See
more here: https://thsom.de/support

Have fun learning mathematics!
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Probability Theory — Part 1

(Stochastic, stochastic processes, statistics,..)

Probability measures Random variables Central limit theorem

Probability distributions Random processes Statistical tests

Example: @ Probability of getting an even number?
1
A-Juaef, PA) =7

number of throws with an even outcome 1

V
I

number of fotal throws 2
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Probability measures: measures with fotal mass = 1
Q
sample space \A R
subset A — collection of subsets
subset B /

We want: [F(ﬂ) = 1 , ‘P(¢> =0

- P(A) e [0,1]
. P(AuB) = P(A) + P(B) i A,B are disjoint
. G Ant =g
- 1P( JQ A)) = Z P 1 o eve pelbdes disjoint sets
| = Aun A :"¢ for L4

g Power sef

Definition: Let CL be a set. A collection of subsets ¥ C ?(ﬂ) is called
a sigma algebra if: \A,
07— algebra al ¢' 95 c
J ) ¥ Aed, then A=A &

elements A€ J _
are called events  (¢) If A, Au"- c & , Then };)1 AJG &

Definition: Let A_C_’I’(.Q) be a ("—algebra. A map F: \A —> [0,1] is called a
probability measure if: (a) ,‘F(ﬂ) = '1 / ‘P(¢) =0

(@)
(b) ﬂj(}_) AJ> — Z‘ HD(AD
=4 =
if we have pairwise disjoint sefs QAan Aj= g o ¢¢J>
Example: @ 1 Throw: () :i4,2,3,(f,5,é’§

\A - T)(—O—) /numbev of elements in a set

ﬁ)f \A —> [_0,1] ) ‘P(A) = Z—_?)_

For example: ﬂj(i[g) — % : “:‘(12,,4,4’%) = }?— - j?__

Exercise: Prove: 'P(AC) =1 - ‘P(A)
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events form
U —algebra

2l

. L

sample space

(absolutely)
continuous case

discrete case

*finitely many outcomes*

*countably many outcomes*

Q..

discrete

'Y

*uncountably many outcomes*

P

[0.1]

\
mixed and
other cases

P(JA) = 35 P(A)

if we have pairwise disjoint sets

U —additivity:

(abs.) continuous

sample space LL  finite or countable set

(Example: QL ={Heao|s, Tai\sl , QL= N)
A = P@)

P: & — [o,1]
P($<3) for all we L1

U—algebra

probability measure

is completely determined by

>
probability mass function: (Pu)we_ﬂ_ with Pu =2 0
21Pu =1
well
Define: )P(A) A ZPU
we A

Example: (L = 31,2,3,9,5, 6’3 unfair die

_4 1 L R _ 4
=% =% k=% P Ps=7 Pe=3

S
W(ﬁ";Z,:],Ll,SX) = ZPU :5_1% :lz,
w=1

sample space (L < [R" uncountable .CLQ-.:B(R")

(Borel set)
(example: L ={o0,1])
U—algebra A = :B(_O-)
W’ \A’ % [_O,ﬂ

probability measure

can be described by

K) =
probability density function: 5: O— R with £( 0

o JF60dx =1

measurable! o

vene: P(A) := Z\Y £(x)dx

Example: ) = [_0,7-] F 3

throw point into interval

$: =R with ) =1

2 =1

1
Hence: jf(x)Jx = ‘7
0

P(A) = gf(mx =1 Q dx = Licvesqie menswe ()

P(Lat]) = £(b-a)
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@ Coin fossing: H, T

Probability for H:  pe@n [o1]
N g

S, abe§o,1,2,..1

A+b

(Fair coin: F=1z )

/ o. fimes H Drawing a ball
@@@ a L times T - o
00 Probability for @ : DS

:
In both cases: () = iH T} H}> = 0\_+L_ ) W(?@) = —

Binomial distribution: e fosses of the same coin and counting the heads @®%

* draw balls with replacement and count the heads (no order:)

®®
* size , unordered , with replacement 0®
= i0,1,2,..., 3 ik}) <k>\o Two parameters ( ’F>

P =3(n.p) =8in(n.p)

®

e N\
/\ /N /\ /\

In R: / o. times H
e L times T
®@®
®o®
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Probability space (S) ) \A/ [F)
sample space (—algebra probability measure

d<P() P& — o]

~> (ﬂh/ \An/ [F,,> ) he{’l,l,...k

Example:  first throw a die then throw a point into the interval = .
-1 1
possible outcome: (3 ,%) probability?
First probability space: (_Q_“ \A” [F ) 1
1 P TR =X 7
ke A
Second probability space: (-O—z/ \A“ [F )
A\
(A, ﬂ 3(a) [ﬁ(A) = S% dx
A
‘()‘2/\ /evevﬁ
new probability space
> (_()_1x_Q_21 W(\AR“A’«) ! F)
L1,
PVOOIMC‘\' U —algebra pyoo[uc‘\’

measure

P satisfies for A1€\A1 | Ate A/l

PLAx A) = R(A) - B(A)
Pk Erel) = R 3) - R([1.0)) = 4.2 - 2

Definition:  Probability spaces: (_O_h , \Ah, P ) , he {1,2, k

Product space: (L ) A , [F) defined by:

e (O = Q_1x_()_zx--- —_n_ﬂ (e\emem’fs (m uZ/uJ,...>>

JEN
\A = U‘(“ cylinder sefs )
U Qs x A, r QL x o
A,xﬂzx CLyx Ll x -

PVOOIMCT G —algebra

I product measure

[F(A1 X AL X .o % A‘M x (), % _O_mlx ) :[E(AJ[E(AJ.}E‘(AQ

Examp\e: @ throw a die imﬁni’fe\q many Times: (ﬂa, \Ao, )
/1 1
e P TP =D, 7

ke A
Product space: L = _O_o X_Q_o Xy \‘A = product (-algebra / [F product measure
A€ \A event: ‘At the 100th throw, we get a six for the first fime*

99 times

PA) -8(17)- - - BB - B B () <5 L
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Hypergeometric distribution (multivariant)

size . unordered , without replacement
/_\ol balls at
urn model %OO% PRI alls at once

(90(()) é)o colours: finite set d
(fov example: C: = io,'\,l, g)

(ome possible outcome: @ >

} éﬂmchom —> INO or

Sample space:

Q - {(kcLGG N, ‘ > ke =

ceq

(211,)

For our example: G = {(kw k, . k,, ) ¢ N:f ‘ ko+k, + k,+k, = }

NC = number of balls for colourc in the urn

— ZNC fotal number of balls
ced

No - N, : N, _
P(5 (k. ke ko, 1)) = (Q(QN(Q( )
(") "
(multivariant) hypergeometric distribution: i(k vcec;?S) ced

(")

Hypergeometric distribution for two colours: C" = iO 1} / No +N, = N
count the @s : () = {O o)

(“ ()
(")

P P) — o4 , P(1K)
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Conditional probability: (ﬂ , \A, lF) probability space

subset :BG\A — B
with 'P(:B) # 0 '\{Q

L
L ) s W
=—> new probability space: (3} Ry / @/ “D(A) _ "W
\ow\q Ae § vith A<B P(8)
- Ity space P(An2)
=> new probability space: (01, &, "?Qf b= =25

Definition: (KL, &, P) probavility space  Be & with P(B) # 0.

P(AnB)
P(8)

is called the conditional probability of A under B

P(A]B) :=

ﬂ)(. IB) : A — S [Ol'ﬂ is called the conditional probability measure given B

Property: ﬁ)(ﬁ lB) =1 (Fov [P(:B) =0, set W(AIB):(Q

Example: urn model: ordered, without replacement /"\A First ball

sziﬁ/ \_} ’ ﬂ: GXG /_\>Secomol ball
\A _ ?(.Q) OOOO possible sample: (0,0)
P given by probability mass function
PLL(s.98) = P\
P(§(9,1)5) = % 1/ \®
P 93) =2 2 SN
Pki(hﬂ}) -5 @) ®

event: B = *first ball is green* = i(g,ﬁ, (3,r>,§

PliCs.03 13) = PlileSaB) _ PLE(s.0Y) _ L
L&) PE) %

_I
— 3
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P(BnA)
[P(A)

P(AnB)
P(8) '

Bayes's theorem: lP(Al,B) _ “3(]3 | A) —

= | P(AIB) - P® = P(BIA)- PA)

Law of total probability: (_Q_, \A, lP) probability space
Ac & @ ¥ Be A
Bu® =
P(A) Al
disjoint union
L

IP(A) = “)(AnB U AnBC> — (P(AHB)WLHD(AIWBC)
= P(AIB) - P@) + P(AIZ)- P

Case with countably many sefs: :B-LEZ\A‘ for ie T <N with UBu =
e
k.ey\_,/

disjoint union

P(AY = “)(.LE}I(A”:BLD = Zﬂ)(/\ﬂ&) = Z P(AIB,) - P(8)

disjoint union

Example: Monty Hall problem = o
First:  You pick a door (1) /] 2 3 : ;C;;a*s
Second: Show master opens a door with a goat (never the door you picked)
Third: Stay or switch
C() := car is behind door j SJ:: show master opens door | n the second step)

we know: “)(SJ'CJ) =0 , |P(SJ|C?_) = 1 ] “>(53|C1) :—1£

“D(Czl 5_3) _ lP(SJ |Cz) ' ﬁ)(CZ) _ lP(SJ |Cz) ' ﬁ)(cz)
Baqls's ﬁ)(53) ! Z “D(*%'CJ)‘(')(CJ)
fheorem 1| :jgb;fi\:rfali J=1
[P(SJ |Cz) ) m 2

— - —

PSIC) P, + PLslc) Blen) + Pl Ic:) oy S

i
== 3 3
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Independence (for events)
3 A,:B < () events
independent?
N
@ A,:B < () events
independent:
0
wWe want: (A |3> = and BlA) = ( )
Example: 1 1
A “)(A)—T ; 'P(Al:B): 7
3 P(8) = 1 , P(BIA) = 1—7_
Q0
=—> independent:

Recall: [P(A)é[P(A |:B) = | |P(B> —_l |P(.’B |A) =

X AL N
(®)

&> P(AnB) = P(A)-P(2

Definition:  Let (ﬂ, \A, [F> be a probability space.
Two events A, B e & are called independent if rP(An B) = [P(A7|P(B>

A family (A"-)LGI with A,-_ e & is called independent if

ﬁ)( QJAJ) = _‘;E ﬂ)(A‘) for all finite &J < T .

7.}

Example: @ 2 throws with order: ﬁ’)

// A

{uzqsc} ’I’(ED

uniform distribution
ﬁ)(i(uhwz)}) = .316_

A = *first throw gives 6* = {(u,,wl)e_ﬂ_ | L, =6}

B = *sum of both throws is F* = i(u“uz)eﬂ_ |+, :7}

P(AY =1, P(B) =ﬂ’(§(1,4) (1), (39, &3, (5,2, 6,0]) = —f; =%
P(AnB) = P(5(,n}) ==~ = P(A)-P(B) => A,8 are independent
Example: [ l[j'\ throw a point info unit inferval (_O_ \A [F)

Il A

[O 1]// (—Ob uniform distribution
]

density function

F([“/"]) = f1 dIx =L-a j;; ii:ﬂ $:0—=R with f(x) =1
[at] ’

1, xeloA
[—‘ indicator function: ﬂ,[o 1](X) = 5
O \\ /
° > o , else
1

0

For two independent events A B e \A‘ we have:

(1,50 dx = P(AnB) = P(A)-P(8) = ﬂw 6 dx - ﬂux) I
o \54.]. X) Ax — j'ﬂ x) dx - j’_IL x) Ax //

[o,4] [0.4] [0,4]
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Random variables X : (L — R with some properties,

Example: Throwing fwo dice @ (_Q_ \A [F)
{12393‘4} ”P( Q)

> uniform distribution

X: O— R , (Uu W) > Wt W, random variable gives sum of
the numbers the dice show

Definition:  Let (_ﬂ_, \A') and (ﬁ, :AE’) be measurable spaces (- event spaces).

A map X'- (L —> 6_ is called a random variable if

><_1(K) c & forall e &

EXE!YY\P\@S:(a)(ﬂ’ A) aV]d (ﬁ, \/K) x . ﬂ% |R ! (Uu N;) —> N,‘+ W,

// \ 1] \\

£42,3,4,5,¢) P(L) R BR)

X(R) e PLQ) foral Ae . = X isa

random variable

[

(b) (_Q_ \A) and (ﬁ:}:) X: QO—>R , (vpw)r— w+w,

I \\

§12,3,4, sc} i¢ af R 3B(R) X1(5_2?5> _ {(M)ﬂs 2L = X is ot

random variable

[

Notation: Let (ﬂ_, \A) and (_/(V)_, :A’) be measurable spaces (- event spaces).

/\’ .
probability measure WT \A —> [_0,1] X'. ,O_ _—> _O_ vanolom variable

P(XeR):=P( X'(R)) = P(fve 2| X(eY)
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(ﬂ,&),(f\]\-,%\) event spaces, X_Q_%ﬁ
R S3(R)

/_N
random variable

(0, &, P)

(R,3(R),F)

(abstract)

Definition: Let (ﬂ, \A, \’P) be a probability space, Xi () — [R be a random variable,
R

with Borel sigma a\qebva)

Then ]Px: CBUR) —> [0,1] defined by
B(8):= P(X'(®)) = P(XeB)

is called probability distribution of X

IPisa

probability measure
. . |
oo X'(R) =0 = RK(R) = P(X'R) = Hm(:1

(@) =g = R#) = P(X'() = P(2) =0

Proposition: “)X is a probability measure.

For T~ additivity: Choose B, , B, B,,.. € B(R)  pairwise disjoint.

Then: L#) > X_KB,;) N XKB‘;) = X—1<3a N B,,) =g
-1 -1 -4 =2
So: X (BA, X (:BA, X (30 € \A« pairwise disjoint,

wie B(O) = F(x(03)) = (0 X3
pvobabﬁii’rsl{,ameasuve/-\: i lP(Xq(BQ) — Z ﬂ’x(:BJ‘) 0

NS

Notation: 1If rﬁ\)/ probability measure and njx = lﬂ\j , then X~ F,

-
Example: @L P N tosses of the same coin (1”1: \%1(' ‘Pz\
n BERNOULLI
lo4} Pl #1s #0s

P(5y) = p (1=
X: L— R J{ b= plep

X(‘d) = number of 1s in W => X ~ Ban (Vn ‘03
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Cumulative distribution function (cdf)

/_m
random variable

%

(£, &, P)
(abstract)

(R, 3(R),F)

1~
| _R

Definition: Let (ﬂ_, \A, ‘P) be a probability space, X‘ (L — [R vbe a random variable,

N~ with Borel sigma a\qebva)

i R=>Dd] , Fl)=Blco, 1) = P(X < »)

is called the cumulative distribution function of X

Properties: _E((X) X_)%N 0 , _E((X) H%w 1
T

>

is monotonically increasing (x<x = _'F X)) < _F( ))
. _f-;( is right—continuous ([ x) = x))
XNy X,

Example: X ~ NORMAL(O, 11) probability density function
/N 11
N s
X §x) = =c
i NE
: x ot
’ wmc >

\/___

\y*
~

\%
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A AB <

fwo independents events

X: (L— IR . Y - L— R two independent random variables?

e X' 1( (‘ 22 x—_\)/xx
Y — . R
Mo} % R

Definition:  Let (_Q_, &, \’P) be a probability space and let
X . (L —> IR , Y : ()L —> R be two random variables.

Then X, Y arve called independent if for all K1Y € R

><_1((‘°°/>€D and \(-1((—00 ,)’]) are independent events,
& P 0 Y (o) = PO ) P(Y (o)
& PX<x,Y2)) = T F)
N~y
E(,ﬂ(x'y)e,oolf o rendem varetle (04,1 ) ¢ L= R

Example: Product space: _(L = _CL, X ..O_L p X : (L — R / X(“u“u) ~= 5’(“4)
Y : (L —> R / Y(“Ju“t—) = j(“"r-)

::> X/Y are independent random variables

Definition: A family (Xﬂ>te‘l_' is called independent if for all XJE.(R

n)((xdéx.});)e.)> — _I_HD(XdéXJ> for all ﬁni’r;#\JQI

g€
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(_O. , \A, W) probability space

><: () —> R vandom variable

E(X) c [R expeo’fa‘ﬁon of >< (expected value, mean, expectancy..)

COVV“V\UOUS case: /\ PYObabﬂrh* deV\Si‘h‘ ‘FHV\C-hOW O'F ﬁ)x

LD

E(X)

Definition: (ﬂ, \A, ﬂ)> probability space ><1 (] —> m random variable.

— jx A\IP (abstract integral)
Q

Change of variables:

X X R

L >
J(X> 9 R—R
N R

~
—>

new random variable

(for example: X'L)

fax)ap = { (X @)AM = | 364X ()

TS (N=w) K TR
= [ j(ﬂ Okfx(x) _ J- X) gx X> AX confinuous case
X(1) X(1) - paf of B
o omf of B
Z .,9 X) F ohscve’fe case
xe X(A)
“)x(ixwl)

Remember: B j.x § ()O (Ax continuous case
E(X) - Koy
Z X Px discrete case

Example:
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E(X) := | X 4P

Example: XN E-xP('/\> (exponential distribution)

— TR
PA) = [£.60dx ,  £6 = ’
A v\(;;hr 0 , X< 0

[EOO — jx aP = _S-X‘ffx(ﬂdx = _Sﬂx-léxxclx =
Q

1
R - A

Properties: (_O_ / \A/ ﬂ)> probability space | ><’Y'. ﬂ —> IR random variables,

- [E(X) and lE(Y) exist,

D E(ax+bY) =a-EX) + LEY)  forar ateR

) 35 XY e indeperdent, o E(XY) = EQOE(Y)

@ 3¢ =P, wen E(X) = E(Y)

@ 55 X <Y stmost sty e X(w) < Y()]) =1,
e E(X) < E(Y)
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/N

//XV(X) variance?
M x}

E(X)

Definition: (ﬂ; \A/ ﬁ)> probability space ><'. (L —> R vrandom variable.

e =E(X-EW) ) g

new random variable

F( - 200X + EW))
TS - 2B E(X) + E(E

. 2 §1AIP
EM) B IE(X> J‘Wﬁ(ﬂ)ﬂ

I

lI+

k/
AN
)

I

We need to assume that IE( ><1> — \SXZ dnj exists
Q.

chamge‘O‘FQ‘S —(xz.\gx()o ch continuous case
. x(a)
7
X - Fx discrete case
xe X ()

Examples:

(a) >< ~ Unitorm (ﬁ)g, S Xh}> discrete case with ]PX ({X&) =

IE(X) = jx (MP = Z X ]PX({XJ}> — % Z X, avifz:ae:io
= o i

——

Var (X) = Q(X- EX)) 4P = 50008, (1:3)

J=1

h
DN

J =

(b) XN E_XP(’/\) (exponential distribution) E(X) = —17\—

[E(Xl) = 5XLMP = j.xz’gx(@d‘x £ = iléxx ) x>0
_O— 1

R

0o integration by parts

1 A \!
:_YX")\G'XXJX = %

0

1

Var(X) = EXC) - E(X) = 4
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standard deviation = ,! variance

Definition: (—O-/ VA/ lP) probability space | ><: (—> R random variable,

l
where Sx (MP exists,  Then:
Q.

0‘00 == l Var(X)\

is called the standard deviation of >< _

Examples:

(a) >< ~ Uniform (i h}) discrete case with ]PX({ }) = —15

b
(b) ><,\, NOVYY\a\ </~M 0*l> continuous case with pdf

L (xR E(X) =
O =L FE) I
J[X( T () = @
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Properties of variance and standard deviation:

Let X ,Y be independent random variables where IE(X7’> and ,E(Y?') exist,
Then: (a) Vav(XJr Y) = VaV(X\) t Vav(Y)
(b) VaV(?\XB o 7\Q-V3V(X> for every ’AC [R

@ T = [ T(X)  for overs AR

Proof:  (a) var(X+Y) = [E((quY)l) - [E(><+Y>1
= E(e2XY + YY) —(!EQO + \E(ml
= E() «2E(xY) + E(Y") - EGO - 2EOED - E(Y)

= var(X) + Var(Y) + Z(@w - EKXNEKYW

= EX)E)
independence j

T var (00 = E((x0) - E(x)?
=2 E((x)") - EX) = X(IEQO)— Hxﬂ
= X var(X)

(2% = {var(a) 2 AT (0)

(c)
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Definition: (—O-, \A/ [P) probability space , X, Y: (1 — |R
random variables ((E(Xz>, (E(Yl>>

are finite

cov (x,Y) += E((X- EQO)(Y - E())

is called the covariance of X and Y

Remember: X( Y independent '\\':> Cov (X, Y) = O (X, Y umoowe\a’fed)

only in special situations
(for example: X, Y normally distributed)

Property: COV(XIYY’ < COV(X,X) COV(Y,Y)

Cov
Definition:  — (X/ Y) c K‘_ 1 ) 1] correlation coefficient

ST T (0 T(1)

Example: () = {a,\:,ck / (P uniform on (L < PQQX) = ﬂDQL‘O = (PQC’O = —:'?_>

X, V:qQ-—>R, Xe)=1 X)=0 Xl)=-
Y(a) =0 Y() =1 Y(e)

COV(XIY> =0

\%

= XY=0 , EX)=0

Tndependence? ﬂ)(s NYzy) = ﬂD(Xs )-ﬁ)(\(s ) for al
P({et) = P({<b)-P({~ct) 4
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X: 0 — I'Rh random vector \

:> X1'- (L —> R vandom variable S8 >

projection to
marginal

first component
/X\ m distribution
Y
(R,30), )

N~ 7
X

1

Definition: ﬂ)X = (WX)T is called the marginal distribution of X
1

with respect to the first component.
FX1( ) = WX1((—00, ]) marginal cumulative distribution function
= HDX((—M’ ]X[P\X"‘Xﬁ{>
— (P(X1§ | XL€R,...,X,,€R>

Two important cases:

h
(1) (abs,) continuous: ﬂjx has a probability density function JCX: R — R

projection
N—>

V

projection
N——7> —=a_

V

§X( ) = 5*5:)(( N xhv A(X“...,X,) marginal probability density function
1
A
\’Rh

(2) disovete: [y has a probability mass function (px)xep

(only countably many are non—zero)

marginal probability mass function (r ) with
P :Z F( IX'IIXJI'-'IXn)
X4, %,
el
2 N\
Example: X: O —R uniformly distributed on A /
4
X,,%,) €
SX(XUXL) = {2 / (- ) A h\
O / (X,,XL)¢, A 1 >

(e ]
marginal probability density function ‘SX,( ) = 5 Sx( ,X,_) ClX,L
~ 0o

}_Z dx, e [o,1)
o, té[of]
1-, te [od]

i 0 , té&[of]

n
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conditional probability:

3
P(I3) : A — F(A[B) C::j:::::}b

is probability measure (ﬂ’(ﬁB)>O>

Definition: (ﬂ, \Px, ﬂy) probability space Be & it fP(B> >0
<:> (ﬂ,\A, ﬂ)( |B)> probability spaoe>

For a random variable X: O — R, we define:

|E(X> — jX 0”'J (expectation of X))

E(XI3) = JXdP(13) (corditional expectation of X given 3 )
iqB

AnB
Remember: 1 HD(A“B) _ ﬂJ( )
E(X|3) =55 JX1,4P T
B =0 AHJ;”“P
_ 1
— ﬁ)(B) IE(jl—_'BX> indicator function: 1‘_3(&1) = ifo ! :’;i
Example: X ~ NORMAL(0,1) | 5x()=q%<£%l, __///fﬁ\\\\__

B={x>0f

1 RN e
E(x|8) = o ijxm]@ W) = g w;x(u

0,

—

o
02

=1

General example: IE(/H_A|B> _ JﬂAAﬁ)(‘B> — j o“P(‘B> — ﬂ)(A |B>
n A

Example: Throw one die: X? ﬂ —> [R / 3 = iX:S,Xzé}

E(X|3) = -i(xauP =ﬁ2 P(x=x)

4 N -
( .(_+ C)" L_S—'S

A
()

-—

z
6
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Recall: X’ O — R discrete ;, B event with ﬂ3(3>> 0
E(x18) = [XdP(13) = S5 P(x=+18)
e

Consider Y_O, —> ﬂ{ discrete b = iY = )’l .

/joivﬁ pmf of Xand Y

P(X=x wa Y=y
Define: S(Y>:E(X|Y=)’) - Z ( rl_)(Y:y> )4

YN\ TN
~_ sn  ®r

;(Y) . (L —> R is called the conditional expectation of X given Y

and denoted by [E(X l Y)

Example: die throw , (L = i'h---,é}( , X’ a— fR checks if number is even

X(w) _ {1 | ué‘,{'l,‘t/(%

0 , else

Y: (0 —> R checks if number is the highest

() ~§1 0 bz

, else

P(X=x «d Y=0) )
{E(X‘YXM) = {[E(deﬁ =2 (XrP(Y=o) ~ = = =5 ) WEY-.SS

= and Y:1> i_ _
E(X|Y=1)= W(X :_—‘;-—:’\ l“‘é

1 1
Definition for (abs,) continuous case: (X, Y> ; (L —> R with pdf }(X,Y):Rem

= Exly=y) = | fonC)

SN

conditional density

[E(X l Y) = 3(\(> = (70 Y is called the conditional expectation of X given Y

Properties:  (a) X,Y independent => [E(X‘Y) = E@Q and
E(xY 1Y) = E(X)Y

TE(XIX) = X

(c) IE (E(XlY)) — \E(X) (Law of fotal probability)
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Stochastic processes: « *random variables in a row"

« random experiment with time evolution

(discrete timesteps, continuous time)

board game: 1 SR
N2 A9 A A MNP Hr 2 2 S 2

D

coin game: foss a coin again and again until two successive heads occur

Xn: @/@}NH{OI'\/Z}
et { /1t X

no tfwo successive heads two successive heads
in the first n fosses in the first N tosses
and Nth toss is "tails*

ne N

no Two successive heads
in The first n tosses
and Nth toss is "heads"

Definition: | set (of’fen T =N, T:'zl T = R)
For each €€ | , define: Xt" a— R (random variable/ vector)

Then: (X")&T is called a stochastic process.

For we (L : the map T —> [R is called path,

t = Xt(“’)

Example from before: /%N /lq,_\l
: : : 1
’ @ @ />
1 1 «

(@@ — {0.1,2]
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Definifion:  Let (X,D be a stochastic process with T = 7Z or T< R
teT —~N— N
discrete=time  optinuous—time
We call (Xt)eeT Markov process or Markov chain if
for all neN, %, t,, _,,/th/’ce—r’ t,<t,<--<t,< t,
and Xe 1 Xy yooor Xo /X € R, we have:
n)(x.b:x | Xt1:X1,th: 'L""’ th:Xh>
— P(Xt: X | th: Xh>
Y
for discrete—time Markov chain: @ /@
depends only on X, , X, t,
Py (ki) = P(X=y | X, = x)
( Transition probability @/—N
from x fo v at time k
Y fime =k fime = k+4
1f f’x,y(k,l\ﬂl) does not depend on k, then we say:
the Markov chain is fime—homogeneous
Example: toss a coin again and again until Two successive heads occur

({@®@Y — {012
"N { : {f Q

no two successive heads two successive heads

in the first n tosses in tThe first h tosses
and Nth toss is "tails*

no Two successive heads
in the first n tosses
FM and Nth toss is *heads"

SITN N

l
s />1
>
RORORO)]
3 " foo o Pue

e SO A

Transition matrix Pro Po P22

i
L
Here: /P = 1
IR
0

o ol
-~ o)~ O

0 one time—step y /N
Start the game with cl = (1,0,0) —— 51

)
—
~ )~
N
~

()
~—

one time—step

~> =G %

)

2 PP (Vector—matrix—multiplication)

n
> h C\O (P \-« Law of total probability

(0,0,4) L
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stochastic process: (xt)eeT L subset of Z or R

discrete-time Markov chains + Time-homogeneousz

7 X

dePenhds only onh X and )/ \@\ @

?x,y = IF(X\(H = )’ | xk = X) independent of ke TC #
L} transition matrix P = (Fx')’>x,y

Important: « entries of P lie in [0,1]

. fl) acts on row vectors from the right

General example: Xk: 0 — U,'l,..., }

SN 7Y Y
© QO 6O - 0O

start at k=0 : probability mass function of Xo (Pmac of ﬁ)xa>

is given by a row vector cloé‘_ “{“

(‘]0>h - n)(xoz m)
st k=t: (4, = P(X=m) = 3 P(x=r18) P(8)

/disjo'm’r uhion!
law of total probability (8. = (0
¢=

8, = iX,, ) Ll
Z?(&)-W(xf m | 8:)

|

I
=
V)
°><
]
-
—
=
N
___><
|
3
°><
1)
-
~—/
1
-~
~—O
o
—
N/
3

by induction: 1k = 10 : (})

Definition:

CIE [R“ is called a stationary distribution for the Markov chain if
1?: 1 (and C],,\G,[_O,{I ) ZCA]M:1>

Note: 1? — al <:> ’PT1T _ ‘1T <:> PTClT — 11
Ji J

eigenvalue
column vector J

T

eig enhvector

Exam®ple:

o rl>el=

_a
i
~

o ol
- o]~ O
\_/
e
e
M
<
-~ N
—
—’
|
—_—
]&
~_ "
1)
A
M
<
/\I
(- FI‘NJ"
.IA r'l-‘
o o O©

row o?Perations
——

) 1 -1 0 0
= Ker | o 1 0 | = Span a0
o 0 0 1

> only stationary distribution 1 = (0,0,0
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(ﬂ, &, ﬂ’) probability space

Markov's inequality: X'- Q_ —> R ranhdom variable.

Then |X| QO — I:O,Oo) satisfies:

Al

for any €>0 , P>0

picture for p=1:

X
U
a0
\ J o
e Pk =e) < E(IXI)

Proof:

We have: ‘X(m” > € <;> |)((u)|?_>_ (‘_r indicator function

/
And: Qf n)(‘xl > C) _ EF' n)(‘)(lr}_ €P> = EP. [E(ﬂ"ilX|r_>-€F}>

= \E(EP-iLwlr}_g}) < E(\Xlr) O

Chebyshev's inequality: X‘- Q) —> R random variable where [E(‘Xl )< 0Q .

Then: ﬂ) ( |X—|E(X)| > E) < VanQ for any ¢>0,

€

Proof:  Define: X := X-[E(X). ence: Var(X) =Var(%) = E(X)
o E(I%I° X
ﬁ)(IX—[E(X)l za) = F([X] ZE)/Aé E(Ix ) _ Va;( )

Markov's inequality for p=1 |




BECOME A MEMBER

ON STEADY L\ v Y 4

The Bright Side of ¢ 4>
Mathematics

Probability Theory - Part 27

Assumption:  X: () —> R random variable with

/v\ = [E(X) & both should exist!
'l ::1Var(X)‘

> Probability density function

n-ke P ‘p+k¢ T k=123,

r(X)

E'l

V
Chebyshev's inequality: ﬁ) <| X - IE(X) | > E) < a

ko -intervals: ﬂ)(Xe DA-k(r,/HkV]) = ﬁ)( lX—-/Al < kv)

)
=
()
S
K
(%)
=
M
<—
(%)
=
M
)
<
o
s
<
IVL)
— —
|
,‘<
~
|l
—
|

(L

For k=1: ﬂ)(X€;,A—2¢,,A+Z
For k=3: ﬂ)(XEJA—Bo‘,,Hk:

(l) X€ 4¢. + 1 (r:l File Edit Code View Plots Session Build Debug Profile Tools Help
/ ,A o - R P~ - Go to file/function ~ Addins ~ R Project: (None) ~

® | Untitled1* — Environment History Connections Tutorial ¢
N 682 5 Source A /5~ 5| 5% P~
N. Files Plots Packages Hel Viewer
0‘ eee 1 n = 10000000 9 P ==
2 x = rnorm(n,0,1) ] 0w ¢ Refresh Hel
3 a=x[x> -38&x<=3] R: The Normal Distribution ~  Find in Topic

4 sigma3 = length(a)/length(x)

ﬂ) (X € D -l¢ ) ," + (IZI ) g orirdston=d)l Description

Density, distribution function, quantile
function and random generation for the

- Console Terminal Jobs ™ normal distribution with mean equal to mean
N~ 0 a q 5 4’ ceoe ~ and standard deviation equal to sd.
R R3.63 . ~/
Z A = 1HVITI\II4Uu,1)

5:14; (Top Level) = R Script <

“ | Usage

>a = Xx[x >= -3 & x <= 3] |
ﬂ) X€ 3 30_' dnorm(x, mean = 0, sd = 1, log = FALSE]
= (|" + . _ pnorm(qg, mean = 0, sd = 1, lower.tail -
/ = SRS = G e ) gnorm(p, mean = 0, sd = 1, lower.tail =
rnorm(n, mean = 0, sd = 1)

> print(sigma3)

r{k: O.qql7... El] 0.9972977 Arguments
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(theoretical) law of large humbers empirical B relative
l N = frequency
probability of event S, Probability of event  of the event
'P(A) humber of oufcomes inA

total number

Exanipes @ coih foss: ._Q_.,: iHI T} / n?)(il'l%) = n)O(ET}> - 11-

repeat random experiment: eN O, x L, x---

i

P - Product measure

/ (H in kth toss)

1, we=H
define random variables: in L — R ) Xk(‘*’) = io Gy= T
/ k —

h
let's look at h tfosses: )_(h = %zxk . 0 —> R

(relative frequency of heads in the first h tosses)

we expect: Xh —

!
I\_'L_/ What does this convergence mean?

Weak law of large numbers: Xk: 0. —> R random variables.

Let (Xk)kelN be indepPendent and identically distributed (-‘— i.i.d.)

\
R ) = TR0 S8 o] [ RO = R®) 3k

P sets B R

and [E(|X1|>< oo .

Then for /\A:: E(XJ and for all € >0 :

We say X

S|—

h
zxk converges in probability fo the expected value /\A
k=A

Proof: for the case: /VaY(X1)<oo

-t
We have: I]E(Xh) = [E(%%Xk\) = %% IE(XK) = [k
Var(X,) = Var(iiXJ -1 iVar(Xk) _
" h" = d
By Chebyshev's inequality:
_ Var(X,
W(lxh‘[]g@|28> < a;( ) for any ¢>0,
s N h—> ca

i ) n
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h-> oo

law of large humbers: | repefitions X, x,,.. X, %Exk — |E(X>

— ——

“Monte Carlo method"

Monte Carlo inTegraﬂoh: AN
0o SRR

random points...
S—— random variables: X4 . Xz e

Weak law of large numbers: Yk . L —> R random variables.

Let (Yk)kelN be i.i.d. and E(|Y1|)< o0 . )
Then for /\A:: IE(YJ and for all ¢ >0 ﬂ) %ZYI&_/\A‘EC g O
=

Monte Carlo infegration: Given: g [0,1] —> [—c,c] integrable , c > 0.

4
We want: fﬁ(x) Ax

N Take: X1 Picks a point (randomly = uniformly distributed)

j("D /_\/ from the interval [0,1] I )(1(1,0)

i X (\ " Y’l ::j(XJ What is IE(Y1> ?

{

area: 9(x)-1 e, e

E(1) = E(300)) 2 J st fy0 e = [t

w:/1

Procedure: thl,:"' i.i.d.+uniformely distributed on (0,1]

h 1

?1]_ 2 I (XO apProximates fﬁ(X)O\X
k=1 ‘

N\

= =
(i 1
Example:
——— File Edit Code View Plots Session Build Debug Profile Tools Help
1 O - CRr i Go to file/function + Addins ~ R Project: (None) ~
ll- A x ® mc.R — [ Environment History Connections Tutorial a0
1 , Source on Save = O /' ~ = Run | =% ¢ Source - — — o -
es ots ackages e ewer
1 + x 1 n = 300000000 9 P =
0 2 x = runif(n) I &3 /.\ ; Refresh Help Topic
\\ 3y = 4/(1+x*x) R: The Uniform Distribution ~  Find in Topic
4 print(mean(y)ﬂ
,n, Uniform {stats} R Documentation
The Uniform Distribution
4:15 | (Top Level) * RScript < Description
Console L = [  These functions provide information about the uniform

R R3.63 -~/ distribution on the interval from min to max. dunif gives
the density, punif gives the distribution function qunif
gives the quantile function and runif generates
random deviates.

> source("~/mc.R", echo=TRUE)

> n = 300000000

> x = runif(n) Usage

dunif(x, min = 0, max
punif(q, min = 0, max
qunif(p, min = 0, max
runif(n, min = 0, max

1, log = FALSE)

1, lower.tail = TRUE, Llos
1, lower.tail = TRUE, 1loi
1)

>y = 4/(1+x*x)

> print(mean(y))
[1] 3.141564

> Avrniimantc
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repeating a random experiment: X“ Xv./ .. dLid. /\“: E(XJ
h .
should lead to: -;1\— Xk P Xh — /A
k=1
weak law of large numbers: ‘Xn(“’) — /\A | > ¢ s unlikely for large h

Lé’ W(%ueﬂl |Yn(w>—/\:\|2 Ck) g 0

fk

Pointwise oonvergehce?
h—> 0o

X (0) — M ?

X,(w)

we could have: NEI:\U/\\//\\//ZO

,‘_s\/

How mahy We (L have such “bad" behaviour?

Strong law of large numbers: X : (. — R random variables.

Let (X ), be iid. and E(|X1|)< o0 .

X =2 X () 3 poo for we {1

k=1 almost surely

This means: n)({wé‘._()_ | Ynﬁw) g [Az> =

Then for /u-.: IE(XJ :

3‘-*

(we could have X&“’) %IA but the probability is zero)

Remark: almost sure convergence =>  conhvergence ih Pprobability

strong law of large humbers => weak law of large humbers



BECOME A MEMBER

ON STEADY L\ v Y 4

The Bright Side of ¢ 4>
Mathematics

Probability Theory - Part 31

Assumplions of the central limit theorem: (Xk)kelN ii.d. with Var(X1><0<>.

Part 28

C Var(X,)
—> X, = 13% satissies E(X,) = E(X,), var(X,) = Y2
h n ) n h
k=4
Example:
@@\ urn model without replacement = hypergeometric distribution
@@@ \ (part 6)
Xk Picks 3 balls and counts humbers of @
File Edit Code View Plots Session Build Debug Profile Tools Help
O - CR - - Go to file/function ~ Addins ~ R Project: (None) ~
® | clt2.R ® ' CLT3.R — ™ Environment History Connections Tutorial . |E (x ) — 3 _ 4 8
Source on Save A /- ® | [>% | | Sourc | o # Import ~ 204 MiB ~ ¥ List ~ - 1 - S - ’
1 urn =c(0,0,1,1,1) “ R -+ 7} Global Environment ~
2 sum(sample(urn,3,replace=FALSE)) #simulates one Xk p—
3 n 2000
4 n = 2000 outcomes num [1:2000] 1.8 1.79 1.81 1.79 1. n
5 sum(replicate(n,sum(sample(urn,3,replace=FALSE))))/n . num [1:5] 00111 ) >_< 1 z X
6 = —
7 m zboe Files Plots Packages Help Viewer = h n k
8 outcomes = replicate(m, sum(replicate(n,sum(sample(urn,3, ® Zoom | <X Export - | © o - k'—‘
9 hist(outcomes, breaks = 50) : - : =
7:6 (Top Level) = R Script =

Histogram of outcomes

Console Terminal Jobs ™

R R363 .~/

What is the distribution?

> O
> sum(replicate(n,sum(sample(urn,3,replace=FALSE))))/n % = ‘/
[1] 1.7835 =) . . .

§ Q close to normal distribution!
>m = 2000

0

> outcomes = replicate(m, sum(replicate(n,sum(sample(urn,3,rep

lace=FALSE))))/n) 1.76 1.80 1.84 = Var (X
Var( X,,) = TD

> hist(outcomes, breaks = 50) outcomes

>

Standardize the random variable: /u-.: IE(XJ , =o Var(X1)

(1) exPectation should be zero: Xh—//\

h

(2) variance should be one: (Xh_/“)/(ﬂ)

Central limit theorem:  For ()(k)keIN Lid. with Var(X,)<oo, define:

(155 (6] e e,

Then the cdf of Yv, converges to the cdf of Normal(0,1")
N —> oo
[P(Yh < X) _—> @(x) for every XG‘_R

N ooy
@Sel dt
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De Moivre-Laplace thearem (special case of central limit theorem)

K> approximation of binhomial distribution Bih(h, F)

Galton board —\
I-p Z@\f’
o

h times Bernoulli (f’>

h ‘ ‘ h ,\ n-k
(k)f) t-p)
@ ® |
Ayt
o ‘OO‘ ® /6 t
k= 0 1 L . n
| | ! | 7
Result: For large n and k close to np. we get: o 5 10 15 20
k=np)
n-k - (
(et & | e tneltp
{27 np(1-p)
{ h
pmé of binomial distribution pdf of normal distribution M
De Moivre-Laplace theorem: Let pe (0,1). Then for any G > 0 : []}
l i ' i k ) )n—k I)

’ P(1 F) (k)F ('1 F h—> oo -- _ h increase
max — - >0 |
Ofwl:rhSh 1 _g‘%r)_) AM mk
) e SNty

9:14?(4_:;_) éC b | T | I I |
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Statistics descriptive statistics inferential statistics

“all the theoretically possible data® /
pPopulation /
real world ...

The rough idea:

finite set of data points

ahalyzing
> summarizing —

visualizing
x/YkJ

descriptive stafistics

Prediction

inferential statistics:

finding the underlying
Probability distribution

4 4
Definition:  sample in R™: (X, %, %, .., X,) with XeR

he N
samP|e in "{'- (X1l X11X3I---)Xn> with Xdém

\ can be ordered: X, £ X, & - < X

n

visualization Xs X
uwalizatio . . | ...s_. . oo . . 13
X1 X‘L XJ Xq x‘ X?‘ x8 x_j xﬂ x1‘| x11. X1‘f X1§'
N
histogram %7
(grouping) ;
1--
N
~
—

subset in R

Definition:  For a given sample in R ( X,, X, Xs,..,X,) and subset ACIR,

we define:

absolute frequency of A £bS(A) e #ike IN | X € A}

relative frequency of A £e|(A) -— #ikelNJ Xk€ A} c [0’1]

Definition: ¢4, 4 given sample in R x:.= (qu Ko Rsi oo X\n>

we define the sample mean:

really far off —
/7~ from the other paints X

i
$r
\%

Xs
————— o o o

o e o o
X, X, Xy X¢ Xp o Ky Rg Ky Xn R Xy 1§

mediah: middle point of the sam\)|e> same size same size

X e

eee o ¢ s | @ o0 & h odd
X
P niz ! 0 el same size same size
mx
1(x h even @ ¢o o(e) | (@ tee o h eveh
T( %+X,._z+1), ‘r<\|f
average
unbiased sample variance: 1 1 - _a
k=1

makes it unbiased



