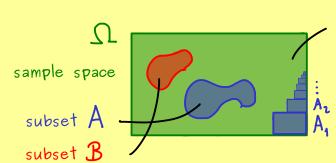
ON STEADY

The Bright Side of Mathematics

Probability Theory - Part 2

Probability measures: measures with total mass = 1



 $P: A \longrightarrow R$ collection of subsets

we want:
$$P(\Omega) = 1$$
, $P(\phi) = 0$
 $P(A) \in [0,1]$

•
$$P(A \cup B) = P(A) + P(B)$$
 if A, B are disjoint

 $A \cap B = \emptyset$

$$P(\bigcup_{j=1}^{\infty} A_j) = \sum_{j=1}^{\infty} P(A_j) \text{ if we have pairwise disjoint sets}$$

$$A \cap B = \emptyset$$

power set

Definition:

Let Ω be a set. A collection of subsets $A \subseteq P(\Omega)$ is called a sigma algebra if:

elements A & A

(a) \emptyset , $\Omega \in A$ (b) If $A \in A$, then $A^{c} := \Omega \setminus A \in A$

are called events

(c) If $A_1, A_2, ... \in A$, then $\bigcup_{j=1}^{\infty} A_j \in A$

Let $A \subseteq P(\Omega)$ be a V-algebra. A map $P: A \longrightarrow [0,1]$ is called a Definition:

probability measure if: (a)
$$P(\Omega) = 1$$
, $P(\phi) = 0$

(b)
$$\mathbb{P}(\bigcup_{j=1}^{\infty} A_j) = \sum_{j=1}^{\infty} \mathbb{P}(A_j)$$

if we have pairwise disjoint sets $(A_i \cap A_j = \emptyset \text{ for } i \neq j)$

Example: 1 throw: $\Omega = \{1, 2, 3, 4, 5, 6\}$

$$A = P(\Omega)$$

number of elements in a set

$$P: A \longrightarrow [0,1], \quad P(A) := \frac{\#A}{\#\Omega}$$

For example: $P(\{2\}) = \frac{1}{6}$, $P(\{2,4,6\}) = \frac{3}{6} = \frac{1}{2}$

Prove: $P(A^c) = 1 - P(A)$ Exercise: