

Ordinary Differential Equations - Part 21

 $= \left(\alpha + \gamma_{t_0, X_0} \right)^{\bullet} (t)$ $\implies \alpha + \gamma_{t_0, X_0} \in S$

Then:
$$\alpha + \gamma_{t_0, \chi_0} \in S$$
 with $(\alpha + \gamma_{t_0, \chi_0})(t_0) = \alpha(t_0) + \gamma_{t_0, \chi_0}(t_0)$
 $= \tilde{\chi}_0 - \chi_0 + \chi_0 = \tilde{\chi}_0$
 $\implies \alpha + \gamma_{t_0, \chi_0}$ is solution of $(IVP_{\chi_0}^{t_0})$
Aniqueness
 $\implies \beta = \alpha + \gamma_{t_0, \chi_0}$

Result: The solution set of $\dot{x} = A(t)x + b(t)$ is given by

$$S = S_{\circ} + \gamma$$

where S_{o} is the solution space of the homogeneous part $\dot{x} = A(t) x$ and γ is a particular solution of $\dot{x} = A(t) x + b(t)$. $\left(S$ is an n-dimensional affine subspace $\right)$