-
Title: Solving Linear Equations of First Order
-
Series: Ordinary Differential Equations
-
YouTube-Title: Ordinary Differential Equations 7 | Solving Linear Equations of First Order
-
Bright video: https://youtu.be/axWeu1tAFB0
-
Dark video: https://youtu.be/XGzLYiSgg_0
-
Ad-free video: Watch Vimeo video
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: ode07_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Consider the ordinary differential equation $\dot{x} = t^2 x + 3$. What is the integrating factor according to the video?
A1: $ \exp(-\frac{1}{3} t^3) $
A2: $ \exp(\frac{1}{3} t^3) $
A3: $ \exp(t^2) $
A4: $ \exp(-t^2) $
Q2: Consider the ordinary differential equation $\dot{x} = \sin(t) x + e^{-\cos(t)}$. Which of the following ODEs is not equivalent to this?
A1: $\dot{x} e^{-\cos(t)} - \sin(t) x e^{-\cos(t)} = 1$
A2: $\dot{x} e^{\cos(t)} - \sin(t) x e^{\cos(t)} = 1$
A3: $\frac{d}{dt} \Big( x e^{\cos(t)} \Big) = 1$
A4: $\dot{x} - \sin(t) x = e^{-\cos(t)}$
-
Last update: 2024-10