$f(x,y) = \begin{pmatrix} x \\ F(x,y) \end{pmatrix}$

The Bright Side of Mathematics

Multivariable Calculus - Part 26

Implicit function theorem:
$$U \subseteq \mathbb{R}^k \times \mathbb{R}^m$$
 open, $F \in C^1(U, \mathbb{R}^m)$

Let $u^{(0)} = (x^{(0)}, y^{(0)}) \in U$ such that $F(u^{(0)}) = 0$.

If $\det\left(\frac{\partial F}{\partial y}(u^{(a)})\right) \neq 0$, then there are open sets $\bigvee_{1} \subseteq \mathbb{R}^{k}$, $\bigvee_{2} \subseteq \mathbb{R}^{m}$ $\begin{pmatrix} \chi^{(a)} \in \bigvee_{1} \\ y^{(b)} \in \bigvee_{2} \end{pmatrix}$ and a map $g \in C^1(V_1, V_2)$ with F(x, g(x)) = 0 for all $x \in V_1$.

Inverse Function Theorem: $U,V \subseteq \mathbb{R}^n$, $f \in C^1(U,V)$, $u^{(0)} \in U$.

Proof:
Inverse Function Theorem:
$$U, V \subseteq \mathbb{R}^n$$
, $f \in C^1(U, V)$, $u^{(0)} \in U$.
 $\det \left(J_f(u^{(0)}) \right) \neq 0 \implies f$ is a local C^1 -diffeomorphism at $u^{(0)}$.
Define: $f: U \longrightarrow \mathbb{R}^k \times \mathbb{R}^m$, $f(x,y) := \begin{pmatrix} x \\ E(x,y) \end{pmatrix}$

$$\int_{f} (u^{(0)}) = \begin{pmatrix} \frac{1}{0} & \frac{1}{0} & 0 & 0 \\ \frac{1}{0} & \frac{1}{0} & \cdots & \frac{1}{0} \\ \frac{1}{2F}(u^{(0)}) & \frac{2F}{2x_1}(u^{(0)}) & \frac{2F}{2y_{m}}(u^{(0)}) \end{pmatrix} = \begin{pmatrix} \frac{1}{2F} & 0 \\ \frac{2F}{2x_1}(u^{(0)}) & \frac{2F}{2x_2}(u^{(0)}) & \frac{2F}{2x_2}(u^{(0)}) \end{pmatrix}$$
Linear Algebra 49

Linear Algebra 49
$$\Rightarrow \det\left(J_{f}(u^{(0)})\right) = \det\left(\underline{J}_{k}\right) \cdot \det\left(\frac{\partial F}{\partial y}(u^{(0)})\right) \neq 0$$

$$R^{m} \wedge (F=0) \qquad R^{m} \wedge (F=0)$$

Linear Algebra 49
$$\implies \det \left(\int_{\mathcal{T}} (u^{(0)}) \right) = \det \left(\int_{\mathcal{T}} (u^{(0)}) \right) \neq 0$$
inverse function theorem
$$\implies \det \left(\int_{\mathcal{T}} (u^{(0)}) \right) = \det \left(\int_{\mathcal{T}} (u^{(0)}) \right) \neq 0$$

$$S := \int_{1}^{1} \begin{bmatrix} R \\ \\ V_{1} \end{bmatrix}$$

$$V_{1}$$

$$V_{2}$$

$$V_{3}$$

$$V_{4}$$

$$V_{5}$$

$$V_{1}$$

$$V_{1}$$

$$V_{1}$$

$$V_{2}$$

$$V_{3}$$

$$V_{4}$$

$$V_{5}$$

$$V_{1}$$

$$V_{2}$$

$$V_{3}$$

$$V_{4}$$

$$V_{5}$$

$$V_{5}$$

$$V_{5}$$

$$V_{5}$$

$$V_{7}$$

$$V_{$$

Consider map
$$\int_{-1}^{-1} : V_1 \times V_1 \longrightarrow V_1 \times V_2$$

$$\begin{pmatrix} X \\ Y \end{pmatrix} \longmapsto \begin{pmatrix} X \\ h(X,Y) \end{pmatrix}$$

$$\Rightarrow \text{second component of } \int_{-1}^{-1} \text{defines } C^1 - \text{function:}$$

$$\int_{\mathbb{R}^{(x,y)}} f(x,y) = \begin{pmatrix} x \\ F(x,y) \end{pmatrix} = \begin{pmatrix} x \\ f(x,y) \end{pmatrix} = \int_{\mathbb{R}^{1}} f(x,y) dx = \int_{\mathbb{R}^$$

$$\Rightarrow y = h(x, F(x,y))$$
for all $y \in V_2$, $x \in V_1$

$$\Rightarrow y = g(x)$$
for all $x \in V_1$ with $F(x,y) = 0$

$$\Rightarrow y = g(x)$$
We have shown: If $(x,y) \in V_1 \times V_2$ with $F(x,y) = 0$, then $y = g(x)$.

Jacobian of g : $F(x, g(x)) = 0$ for all $x \in V_1$

 $(F \circ G)(x)$ with $G(x) = \begin{pmatrix} x \\ q(x) \end{pmatrix}$

 $= \left(\frac{\partial F}{\partial x}(G(x)) \middle| \frac{\partial F}{\partial y}(G(x))\right) \begin{pmatrix} 1_{k} \\ ---- \\ J_{q}(x) \end{pmatrix}$

$$= \frac{\partial x}{\partial x} (G(x)) + \frac{\partial y}{\partial y} (G(x)) \int_{0}^{x} (x)$$

chain rule \Longrightarrow $0 = J_{F \circ G}(x) = J_{F}(G(x)) J_{G}(x)$