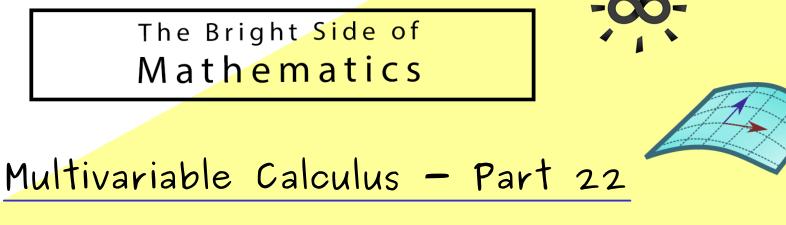
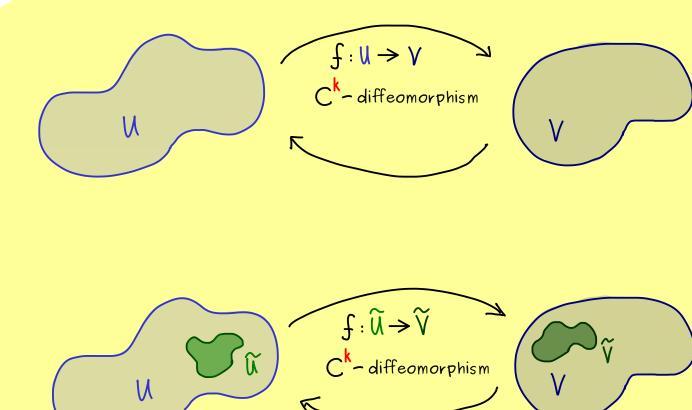


The Bright Side of Mathematics





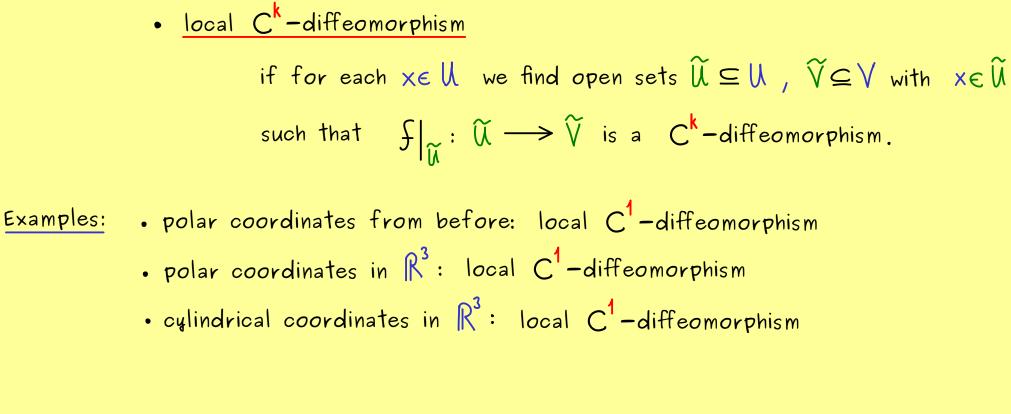
 $\Phi: (0,\infty) \times \mathbb{R} \longrightarrow \mathbb{R}^2 \setminus \{0\}$

 $(\Gamma, \varphi) \mapsto \begin{pmatrix} \Gamma \cos(\varphi) \\ \Gamma \sin(\varphi) \end{pmatrix}$

Example:

with $J_{\overline{\Phi}}(r, \varphi) = \begin{pmatrix} \cos(\varphi) & -r\sin(\varphi) \\ \sin(\varphi) & r\cos(\varphi) \end{pmatrix} \implies \det J_{\overline{\Phi}}(r, \varphi) = r\left(\cos^2 + \sin^2\right)$ $\xrightarrow{\Delta_0}$ but Φ is <u>not</u> injective!

diffeomorphism For $V, V \subseteq \mathbb{R}^n$, $f: V \longrightarrow V$ is called: Definition: • local C^k -diffeomorphism at $x \in U$ if there are open sets $\widetilde{\mathcal{U}}\subseteq\mathcal{U}$, $\widetilde{\mathcal{V}}\subseteq\mathcal{V}$ with $\mathbf{x}\in\widetilde{\mathcal{U}}$



such that $f|_{\widetilde{\mathcal{U}}}: \widetilde{\mathcal{U}} \longrightarrow \widetilde{\mathcal{V}}$ is a C^{k} -diffeomorphism.