

Multivariable Calculus - Part 14

Vector field: \bigvee : $\mathbb{R}^n \longrightarrow \mathbb{R}^n$ continuously differentiable

Question: Is there a function $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ with grad $f: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ satisfying $V(x) = \operatorname{grad} f(x)$ for all $x \in \mathbb{R}^n$. $\left(f \in C^2(\mathbb{R}^n) \right)$

potential function for V

Necessary condition:

$$\frac{\partial}{\partial x_{j}} v_{i}(x) = \frac{\partial}{\partial x_{j}} (\operatorname{grad} f(x))_{i} = \frac{\partial}{\partial x_{j}} (\frac{\partial}{\partial x_{i}} f(x))$$

$$|| \operatorname{schwarz's theorem}$$

$$\frac{\partial}{\partial x_{i}} v_{j}(x) = \frac{\partial}{\partial x_{i}} (\operatorname{grad} f(x))_{j} = \frac{\partial}{\partial x_{i}} (\frac{\partial}{\partial x_{j}} f(x))$$

Example:

$$V: \mathbb{R}^1 \longrightarrow \mathbb{R}^1 , \quad \begin{pmatrix} \times_1 \\ \times_2 \end{pmatrix} \longmapsto \begin{pmatrix} -\times_2 \\ \times_1 \end{pmatrix}$$

$$\frac{\partial V_1}{\partial x_2} = -1$$

$$\frac{\partial V_1}{\partial x_2} = -1$$

$$\frac{\partial V_2}{\partial x_3} = 1$$

there is no potential function f