

 $\mathbb{J}\subseteq\mathbb{R}^n\,,\,\,f\colon\mathbb{J}\to\mathbb{R}\,.$ Definition:

> (a) \int has a local maximum at $x_0 \in \mathbb{D}$ if there is an $\varepsilon > 0$ such that $f(x_{\circ}) \ge f(x)$ for all $x \in \mathbb{D} \cap \mathcal{B}_{\varepsilon}(x_{\circ})$.

(b) f has an isolated local maximum at $x_e \mathbb{D}$ if there is an $\varepsilon > 0$ such that $f(x_{\circ}) > f(x)$ for all $x \in \mathbb{D} \cap \mathcal{B}_{\varepsilon}(x_{\circ})$.

(c) \int has a local minimum at $x_{e} \mathbb{D}$ if there is an $\varepsilon > 0$ such that $f(x_{\circ}) \leq f(x)$ for all $x \in \mathbb{D} \cap \mathcal{B}_{\epsilon}(x_{\circ})$.

(d) f has an isolated local minimum at $x \in D$ if there is an $\varepsilon > 0$ such that

$$f(x_{o}) < f(x) \quad \text{for all } x \in \mathbb{D} \cap \mathcal{B}_{\varepsilon}(x_{o}).$$
(e) f has a local extremum at $x_{o} \in \mathbb{D}$ if f has a local maximum or local minimum at $x_{o} \in \mathbb{D}$

Necessary condition: Let $f \in C^1(\mathbb{R}^n)$ and $x_0 \in \mathbb{R}^n$. f has a local extremum at $X_0 \implies \text{grad} f(X_0) = \begin{pmatrix} 0 \\ 0 \\ \vdots \end{pmatrix}$

 $\left(h^{\mathsf{T}}\mathsf{H}_{\mathsf{f}}(\mathsf{x}_{\mathsf{o}})h < 0 \text{ for all } h \neq 0\right)$

Sufficient condition: Let
$$f \in C^3(\mathbb{R}^n)$$
 and $x_0 \in \mathbb{R}^n$ be a critical point $\left(\operatorname{grad}_f(x_0) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right)$.
Then: $f(x_0 + h) = f(x_0) + \frac{1}{2}h^T H_f(x_0)h + \Psi(h)$ and:
(1) $H_f(x_0)$ positive definite \Longrightarrow f has an isolated local minimum at x_0
 $\left(h^T H_f(x_0)h > 0$ for all $h \neq 0 \right)$
(2) $H_f(x_0)$ negative definite \Longrightarrow f has an isolated local maximum at x_0

(3)
$$H_{f}(x_{0})$$
 indefinite $\implies f$ has not a local extremum at x_{0}
(There is $h^{T}H_{f}(x_{0})h < 0$
and $\tilde{h}^{T}H_{f}(x_{0})\tilde{h} > 0$

$$f(x_{0}+h) = f(x_{0}) + \frac{1}{2}h^{T}H_{f}(x_{0})h + \Psi(h)$$

(4)
$$f$$
 has a local maximum at $X_0 \implies H_f(X_0)$ negative semi-definite
 $\begin{pmatrix} h^T H_f(X_0)h \leq 0 & \text{for all } h \neq 0 \end{pmatrix}$
(5) f has a local minimum at $X_0 \implies H_f(X_0)$ positive semi-definite

has a local minimum at
$$X_0 \implies H_{f}(X_0)$$
 positive semi-det
 $\begin{pmatrix} h^{T}H_{f}(X_0)h \ge 0 & \text{for all } h \neq 0 \end{pmatrix}$

0