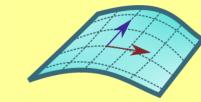
ON STEADY

The Bright Side of Mathematics



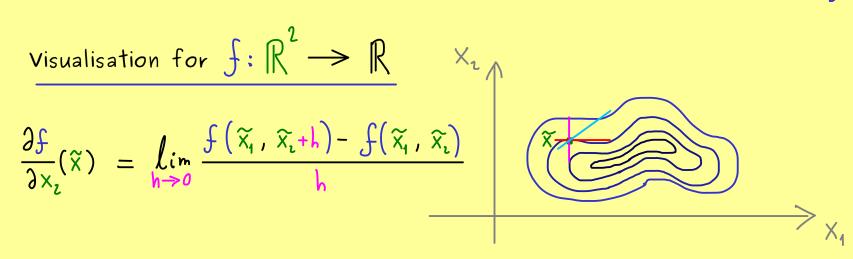
Multivariable Calculus - Part 10

$$f: \mathbb{R}^n \longrightarrow \mathbb{R}$$

Different derivatives: -partial derivatives $\frac{\partial f}{\partial x_i}(\tilde{x})$

-directional derivatives

-total derivative $\int_{\mathbf{f}} (\widetilde{\mathbf{x}})$, grad $\mathbf{f}(\widetilde{\mathbf{x}})$



<u>Definition</u>: For $f: \mathbb{R}^n \to \mathbb{R}$ and $\widetilde{x} \in \mathbb{R}^n$, $v \in \mathbb{R}^n$ (unit vector), the limit

$$\lim_{h\to 0} \frac{f(\widetilde{x} + h \cdot v) - f(\widetilde{x})}{h}$$

is called the <u>directional derivative</u> of f along V at \widetilde{X} .

Notations:
$$(\partial_{\mathbf{v}} f)(\hat{\mathbf{x}})$$
, $(\mathcal{D}_{\mathbf{v}} f)(\hat{\mathbf{x}})$, $(\nabla_{\mathbf{v}} f)(\hat{\mathbf{x}})$, $(\nabla \cdot \nabla f)(\hat{\mathbf{x}})$

<u>Proposition</u>: $\int : \mathbb{R}^n \to \mathbb{R}$ totally differentiable at $\widetilde{\chi} \in \mathbb{R}^n$, $v \in \mathbb{R}^n$ (unit vector).

$$\lim_{h\to 0} \frac{\int (\widetilde{x} + h \cdot v) - \int (\widetilde{x})}{h} = \frac{d}{dt} \int (\widetilde{x} + t \cdot v) \Big|_{t=0} = \frac{d}{dt} (\int o \gamma)(t) \Big|_{t=0}$$
(function: $t \mapsto \int (\widetilde{x} + t \cdot v)$)
(curve: $\gamma(t) = \widetilde{x} + t \cdot v$)

$$= \int_{\mathcal{J}} (\chi(t)) \int_{\mathcal{J}} (t) \Big|_{t=0} = \int_{\mathcal{J}} (\chi(0)) \int_{\mathcal{J}} (0)$$

$$= \int_{\mathcal{J}} (\widetilde{x}) V = \langle \operatorname{grad} f(\widetilde{x}), V \rangle$$