• Title: Application of the Inverse Function Theorem

  • Series: Multivariable Calculus

  • Chapter: The Implicit and Inverse Function Theorems

  • YouTube-Title: Multivariable Calculus 24 | Application of the Inverse Function Theorem

  • Bright video: Watch on YouTube

  • Dark video: Watch on YouTube

  • Ad-free video: Watch Vimeo video

  • Forum: Ask a question in Mattermost

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: mc24_sub_eng.srt missing

  • Download bright video: Link on Vimeo

  • Download dark video: Link on Vimeo

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: The following equation $\sin(x^3) + \cos(y^2 + \sin(z)) = 1$ should be given in an explicit form $z(x,y)$ around the point $(0,0,1)$. What should be the chosen function $f$ to apply the inverse function theorem?

    A1: $$f: \mathbb{R}^3 \rightarrow \mathbb{R}^3 \text{ with } f(x,y,z) = \begin{pmatrix} x \ y \ \sin(x^3) + \cos(y^2 + \sin(z)) \end{pmatrix}$$

    A2: $$f: \mathbb{R}^3 \rightarrow \mathbb{R} \text{ with } f(x,y,z) = \sin(x^3) + \cos(y^2 + \sin(z)) - 1$$

    A3: $$f: \mathbb{R}^3 \rightarrow \mathbb{R} \text{ with } f(x,y,z) = \begin{pmatrix} x \ y \ z \end{pmatrix}$$

    Q2: The following equation $\sin(x^3) + \cos(y^2 + \sin(z)) = 1$ should be given in an explicit form $z(x,y)$ around the point $(0,0,1)$. We choose the following function $f: \mathbb{R}^3 \rightarrow \mathbb{R}^3$ with $$f(x,y,z) = \begin{pmatrix} x \ y \ \sin(x^3) + \cos(y^2 + \sin(z)) \end{pmatrix}$$ what is the Jacobian determinant at $(0,0,1)$

    A1: $1$

    A2: $0$

    A3: $-\cos(1)$

    A4: $-\cos(1) \sin(\sin(1))$

    A5: $\sin(1)+\cos(1) \sin(-\sin(1))$

  • Last update: 2024-10

  • Back to overview page


Do you search for another mathematical topic?