
-
Title: Application of the Inverse Function Theorem
-
Series: Multivariable Calculus
-
YouTube-Title: Multivariable Calculus 24 | Application of the Inverse Function Theorem
-
Bright video: Watch on YouTube
-
Dark video: Watch on YouTube
-
Ad-free video: Watch Vimeo video
-
Forum: Ask a question in Mattermost
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: mc24_sub_eng.srt missing
-
Download bright video: Link on Vimeo
-
Download dark video: Link on Vimeo
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: The following equation $\sin(x^3) + \cos(y^2 + \sin(z)) = 1$ should be given in an explicit form $z(x,y)$ around the point $(0,0,1)$. What should be the chosen function $f$ to apply the inverse function theorem?
A1: $$f: \mathbb{R}^3 \rightarrow \mathbb{R}^3 \text{ with } f(x,y,z) = \begin{pmatrix} x \ y \ \sin(x^3) + \cos(y^2 + \sin(z)) \end{pmatrix}$$
A2: $$f: \mathbb{R}^3 \rightarrow \mathbb{R} \text{ with } f(x,y,z) = \sin(x^3) + \cos(y^2 + \sin(z)) - 1$$
A3: $$f: \mathbb{R}^3 \rightarrow \mathbb{R} \text{ with } f(x,y,z) = \begin{pmatrix} x \ y \ z \end{pmatrix}$$
Q2: The following equation $\sin(x^3) + \cos(y^2 + \sin(z)) = 1$ should be given in an explicit form $z(x,y)$ around the point $(0,0,1)$. We choose the following function $f: \mathbb{R}^3 \rightarrow \mathbb{R}^3$ with $$f(x,y,z) = \begin{pmatrix} x \ y \ \sin(x^3) + \cos(y^2 + \sin(z)) \end{pmatrix}$$ what is the Jacobian determinant at $(0,0,1)$
A1: $1$
A2: $0$
A3: $-\cos(1)$
A4: $-\cos(1) \sin(\sin(1))$
A5: $\sin(1)+\cos(1) \sin(-\sin(1))$
-
Last update: 2024-10