
-
Title: Inverse Function Theorem
-
Series: Multivariable Calculus
-
YouTube-Title: Multivariable Calculus 23 | Inverse Function Theorem
-
Bright video: Watch on YouTube
-
Dark video: Watch on YouTube
-
Ad-free video: Watch Vimeo video
-
Original video for YT-Members (bright): Watch on YouTube
-
Original video for YT-Members (dark): Watch on YouTube
-
Forum: Ask a question in Mattermost
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: mc23_sub_eng.srt missing
-
Download bright video: Link on Vimeo
-
Download dark video: Link on Vimeo
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Is a $C^1$-function $f: \mathbb{R}^n \rightarrow \mathbb{R}^n$ with $\det J_f(x_0) \neq 0$ a local diffeomorphism at $x_0$?
A1: Yes!
A2: No, $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x) = x^3$ is a counterexample.
A3: No, this is never correct.
Q2: The Banach fixed-point theorem is used to construct the inverse function. We have a function $z: \overline{B_\varepsilon(0)} \rightarrow \overline{B_\varepsilon(0)}$. Which of the following functions is a contraction?
A1: $| z(x) - z(\tilde{x}) | \leq | x - \tilde{x} |$
A2: $| z(x) - z(\tilde{x}) | \leq \frac{1}{2} | x - \tilde{x} |$
A3: $| z(x) - z(\tilde{x}) | < | x - \tilde{x} |$
A4: $| z(x) - z(\tilde{x}) | > | x - \tilde{x} |$
-
Last update: 2024-10