
-
Title: Local Diffeomorphisms
-
Series: Multivariable Calculus
-
YouTube-Title: Multivariable Calculus 22 | Local Diffeomorphisms
-
Bright video: Watch on YouTube
-
Dark video: Watch on YouTube
-
Ad-free video: Watch Vimeo video
-
Forum: Ask a question in Mattermost
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: mc22_sub_eng.srt missing
-
Download bright video: Link on Vimeo
-
Download dark video: Link on Vimeo
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Is following map a diffeomorphism? $$ \Phi: (0,\infty) \times \mathbb{R} \rightarrow \mathbb{R}^2 \setminus { 0 } , , ,,, (r, \varphi) \mapsto \begin{pmatrix} r \cos(\varphi) \ r \sin(\varphi) \end{pmatrix} $$
A1: No, because $f$ is not injective.
A2: No, because $f$ is not surjective.
A3: Yes!
A4: No, because $f$ is not differentiable.
Q2: Is following map a diffeomorphism? $$ \Phi: (0,1) \times (0,\pi) \rightarrow \mathbb{R}^2 \setminus { 0 } , , ,,, (r, \varphi) \mapsto \begin{pmatrix} r \sin(\varphi) \ r \cos(\varphi) \end{pmatrix} $$
A1: No, because $f$ is not injective.
A2: No, because $f$ is not surjective.
A3: Yes!
A4: No, because $f$ is not differentiable.
-
Last update: 2024-10