• Title: Taylor’s Theorem - Examples

  • Series: Multivariable Calculus

  • YouTube-Title: Multivariable Calculus 17 | Taylor’s Theorem - Examples

  • Bright video: https://youtu.be/rDHrX87iwHM

  • Dark video: https://youtu.be/0gADi9YZG_A

  • Ad-free video: Watch Vimeo video

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: mc17_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: What is the correct formula for the Hessian of a function $f: \mathbb{R}^2 \rightarrow \mathbb{R}$?

    A1: $$ H_f(x) = \begin{pmatrix} \frac{ \partial^2 f }{\partial x_1^2 }(x) & \frac{ \partial^2 f }{\partial x_1 \partial x_2 } (x)\ \frac{ \partial^2 f }{\partial x_2 \partial x_1 }(x) & \frac{ \partial^2 f }{\partial x_2^2 } (x) \end{pmatrix} $$

    A2: $$ H_f(x) = \begin{pmatrix} \frac{ \partial^2 f }{\partial x_1^2 }(x) & \frac{ \partial^2 f }{\partial x_2 \partial x_2 }(x) \ \frac{ \partial^2 f }{\partial x_2 \partial x_2 }(x) & \frac{ \partial^2 f }{\partial x_2^2 }(x) \end{pmatrix} $$

    A3: $$ H_f(x) = \begin{pmatrix} \frac{ \partial f }{\partial x_1 }(x) & \frac{ \partial f }{\partial x_2 }(x) \ \frac{ \partial f }{\partial x_2 }(x) & \frac{ \partial f }{\partial x_1 } (x) \end{pmatrix} $$

    A4: $$ H_f(x) = \begin{pmatrix} \frac{ \partial^2 f }{\partial x_2^2 }(x) & \frac{ \partial^2 f }{\partial x_1 \partial x_2 } (x) \ \frac{ \partial^2 f }{\partial x_2 \partial x_1 } (x) & \frac{ \partial^2 f }{\partial x_1^2 } (x) \end{pmatrix} $$

    Q2: Let $f: \mathbb{R}^2 \rightarrow \mathbb{R}$ given by $f(x_1, x_2) = x_1 + x_2^2 + x_1^4$. What is the second Taylor polynomial $T_2$ of $f$ with expansion point $(0,0)$?

    A1: $T_2(h_1, h_2) = h_1 + h_2^2$

    A2: $T_2(h_1, h_2) = h_1 + h_2$

    A3: $T_2(h_1, h_2) = h_1^2 + h_2$

    A4: $T_2(h_1, h_2) = h_1^2 $

    A5: $T_2(h_1, h_2) = h_1^3 + h_2^2$

    Q3: Let $f: \mathbb{R}^2 \rightarrow \mathbb{R}$ given by $f(x_1, x_2) = \cos(x_1 x_2)$. What is the first Taylor polynomial $T_1$ of $f$ with expansion point $(0,0)$?

    A1: $T_1(h_1, h_2) = 1$

    A2: $T_1(h_1, h_2) = 1+ h_1 + h_2 $

    A3: $T_1(h_1, h_2) = h_1 + \cos(h_2) $

    A4: $T_1(h_1, h_2) = 1+ h_1 $

    A5: $T_1(h_1, h_2) = h_2 $

  • Last update: 2024-10

  • Back to overview page


Do you search for another mathematical topic?