-
Title: Taylor’s Theorem
-
Series: Multivariable Calculus
-
YouTube-Title: Multivariable Calculus 16 | Taylor’s Theorem
-
Bright video: https://youtu.be/Nhj8Gz_lo5g
-
Dark video: https://youtu.be/ponHSUQs1O0
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: mc16_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: What is the correct formula for the $k$-th Taylor polynomial $T_k$ of a function $f: \mathbb{R}^n \rightarrow \mathbb{R}$ with expansion point $\widetilde{x}$.
A1: $$ T_k(h) = \sum_{|\alpha| \leq k} \frac{D^\alpha f(\widetilde{x})}{\alpha!} h^\alpha $$
A2: $$ T_k(h) = \sum_{|\alpha| \leq k} \frac{D^\alpha f(h)}{\alpha!} h^\alpha $$
A3: $$ T_k(h) = \sum_{|\alpha| \leq k} \frac{D^\alpha f(h)}{\alpha!} {\widetilde{x}}^\alpha $$
A4: $$ T_k(h) = \sum_{|\alpha| \leq k+1} \frac{D^\alpha f(\widetilde{x})}{\alpha!} {\widetilde{x}}^\alpha $$
Q2: Let $f: \mathbb{R}^2 \rightarrow \mathbb{R}$ given by $f(x_1, x_2) = x_1 + x_2^2$. What is the second Taylor polynomial $T_2$ of $f$ with expansion point $(0,0)$?
A1: $T_2(h_1, h_2) = h_1 + h_2^2$
A2: $T_2(h_1, h_2) = h_1 + h_2$
A3: $T_2(h_1, h_2) = h_1^2 + h_2$
A4: $T_2(h_1, h_2) = h_1^2 $
A5: $T_2(h_1, h_2) = h_1^3 + h_2^2$
Q3: Let $f: \mathbb{R}^2 \rightarrow \mathbb{R}$ given by $f(x_1, x_2) = x_1 + \exp(x_2)$. What is the first Taylor polynomial $T_1$ of $f$ with expansion point $(0,0)$?
A1: $T_1(h_1, h_2) = 1 + h_1 + h_2 $
A2: $T_1(h_1, h_2) = h_1 + h_2 $
A3: $T_1(h_1, h_2) = h_1 + \exp(h_2) $
A4: $T_1(h_1, h_2) = h_1 $
A5: $T_1(h_1, h_2) = h_2 $
Q4: Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be the function given by $f(x_1, x_2) = 2 x_1 x_2^5$ and $\alpha = (1,2)$. What is $D^\alpha f$?
A1: $$ D^\alpha f(x_1, x_2) = 40 x_2^3 $$
A2: $$ D^\alpha f(x_1, x_2) = x_2^3 $$
A3: $$ D^\alpha f(x_1, x_2) = x_1 $$
A4: $$ D^\alpha f(x_1, x_2) = 40 x_1 $$
A4: $$ D^\alpha f(x_1, x_2) = 4 x_1 x_2^4 $$