• Title: Gradient is Fastest Increase

  • Series: Multivariable Calculus

  • YouTube-Title: Multivariable Calculus 11 | Gradient is Fastest Increase

  • Bright video: https://youtu.be/WCvjg5O8Bjk

  • Dark video: https://youtu.be/QNnka1dop_g

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: mc11_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be differentiable. Which of the following statements is correct?

    A1: $$ \Biggl \langle \mathrm{grad} f (\mathbf{x} ), \begin{pmatrix} 0 \ 1 \end{pmatrix} \Biggr \rangle = \frac{ \partial f }{ \partial x_2 }(\mathbf{x})$$

    A2: $$ \Biggl \langle \mathrm{grad} f(\mathbf{x}), \begin{pmatrix} 0 \ 1 \end{pmatrix} \Biggr \rangle = \frac{ \partial f }{ \partial x_1 }(\mathbf{x})$$

    A3: $$ \Biggl \langle \mathrm{grad} f(\mathbf{x}), \begin{pmatrix} 1 \ 1 \end{pmatrix} \Biggr \rangle = \frac{ \partial f }{ \partial x_1 }(\mathbf{x})$$

    A4: $$ \Biggl \langle \mathrm{grad} f(\mathbf{x}), \begin{pmatrix} 1 \ 1 \end{pmatrix} \Biggr \rangle = \frac{ \partial f }{ \partial x_2 }(\mathbf{x})$$

    Q2: Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$ be differentiable. For which $\mathbf{v} \in \mathbb{R}^n$ with $| \mathbf{v} | = 1$ is the directional derivative $ \partial_{\mathbf{v}} f (\mathbf{x}) $ maximal?

    A1: For $ \mathbf{v} $ in the direction of $ \mathrm{grad} f(\mathbf{x}) $.

    A2: For $ \mathbf{v} $ in the direction of $\mathbf{e}_1$.

    A3: For $ \mathbf{v} $ in the direction of $\mathbf{e}_n$.

    A4: For $ \mathbf{v} $ orthogonal to the direction of $ \mathrm{grad} f(\mathbf{x}) $.

    Q3: Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be differentiable and given by $f(x_1, x_2) = 2 x_1^2 + 3 x_2^2$. What is the gradient at point $(1,1)$?

    A1: $ \binom{4}{6} $

    A2: $ \binom{2}{3} $

    A3: $ \binom{1}{1} $

    A4: $ 2$

    A5: $ 4$

    A6: $ 0 $

  • Back to overview page