-
Title: Gradient is Fastest Increase
-
Series: Multivariable Calculus
-
YouTube-Title: Multivariable Calculus 11 | Gradient is Fastest Increase
-
Bright video: https://youtu.be/WCvjg5O8Bjk
-
Dark video: https://youtu.be/QNnka1dop_g
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: mc11_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be differentiable. Which of the following statements is correct?
A1: $$ \Biggl \langle \mathrm{grad} f (\mathbf{x} ), \begin{pmatrix} 0 \ 1 \end{pmatrix} \Biggr \rangle = \frac{ \partial f }{ \partial x_2 }(\mathbf{x})$$
A2: $$ \Biggl \langle \mathrm{grad} f(\mathbf{x}), \begin{pmatrix} 0 \ 1 \end{pmatrix} \Biggr \rangle = \frac{ \partial f }{ \partial x_1 }(\mathbf{x})$$
A3: $$ \Biggl \langle \mathrm{grad} f(\mathbf{x}), \begin{pmatrix} 1 \ 1 \end{pmatrix} \Biggr \rangle = \frac{ \partial f }{ \partial x_1 }(\mathbf{x})$$
A4: $$ \Biggl \langle \mathrm{grad} f(\mathbf{x}), \begin{pmatrix} 1 \ 1 \end{pmatrix} \Biggr \rangle = \frac{ \partial f }{ \partial x_2 }(\mathbf{x})$$
Q2: Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$ be differentiable. For which $\mathbf{v} \in \mathbb{R}^n$ with $| \mathbf{v} | = 1$ is the directional derivative $ \partial_{\mathbf{v}} f (\mathbf{x}) $ maximal?
A1: For $ \mathbf{v} $ in the direction of $ \mathrm{grad} f(\mathbf{x}) $.
A2: For $ \mathbf{v} $ in the direction of $\mathbf{e}_1$.
A3: For $ \mathbf{v} $ in the direction of $\mathbf{e}_n$.
A4: For $ \mathbf{v} $ orthogonal to the direction of $ \mathrm{grad} f(\mathbf{x}) $.
Q3: Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be differentiable and given by $f(x_1, x_2) = 2 x_1^2 + 3 x_2^2$. What is the gradient at point $(1,1)$?
A1: $ \binom{4}{6} $
A2: $ \binom{2}{3} $
A3: $ \binom{1}{1} $
A4: $ 2$
A5: $ 4$
A6: $ 0 $