• Title: Partial Derivatives

  • Series: Multivariable Calculus

  • YouTube-Title: Multivariable Calculus 4 | Partial Derivatives

  • Bright video: https://youtu.be/kq5OCTDAXxw

  • Dark video: https://youtu.be/bIPtcHmpRJ4

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: mc04_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Consider the function $f: \mathbb{R}^3 \rightarrow \mathbb{R}$. What is the correct definition for the notion: $f$ is partially differentiable with respect to $x_3$ at $\tilde{x}$?

    A1: $$ \lim_{h \rightarrow 0} \frac{f(\tilde{x})}{\tilde{x}} $$ exists.

    A2: $$ \lim_{h \rightarrow 0} \frac{f(\tilde{x}_1, \tilde{x}_2, \tilde{x}_3)}{h} $$ exists.

    A3: $$ \lim_{h \rightarrow 0} \frac{f(\tilde{x}_1, \tilde{x}_2, \tilde{x}_3 + h) - f(\tilde{x}) }{h} $$ exists.

    A4: $$ \lim_{h \rightarrow 0} \frac{f(\tilde{x}_1, \tilde{x}_2+h, \tilde{x}_3 + h) - f(\tilde{x}) }{h} $$ exists.

    Q2: Let $f: \mathbb{R}^2 \rightarrow \mathbb{R}$ be given by $$ f(x_1, x_2) = x_1 \cdot x_2 $$ What is $\frac{\partial f}{ \partial x_2}(0,1)$?

    A1: $0$

    A2: $1$

    A3: $2$

    A4: $3$

    Q3: Let $f: \mathbb{R}^2 \rightarrow \mathbb{R}$ be given by $$ f(x_1, x_2) = x_1^2 \cdot x_2 $$ What is $\frac{\partial f}{ \partial x_1}(\tilde{x})$?

    A1: $2 \tilde{x}_1 \tilde{x}_2$

    A2: $2 x_1 \tilde{x}_2$

    A3: $2 x_1 x_2$

    A4: $2 \tilde{x}_1$

  • Back to overview page