-
Title: Partial Derivatives
-
Series: Multivariable Calculus
-
YouTube-Title: Multivariable Calculus 4 | Partial Derivatives
-
Bright video: https://youtu.be/kq5OCTDAXxw
-
Dark video: https://youtu.be/bIPtcHmpRJ4
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: mc04_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Consider the function $f: \mathbb{R}^3 \rightarrow \mathbb{R}$. What is the correct definition for the notion: $f$ is partially differentiable with respect to $x_3$ at $\tilde{x}$?
A1: $$ \lim_{h \rightarrow 0} \frac{f(\tilde{x})}{\tilde{x}} $$ exists.
A2: $$ \lim_{h \rightarrow 0} \frac{f(\tilde{x}_1, \tilde{x}_2, \tilde{x}_3)}{h} $$ exists.
A3: $$ \lim_{h \rightarrow 0} \frac{f(\tilde{x}_1, \tilde{x}_2, \tilde{x}_3 + h) - f(\tilde{x}) }{h} $$ exists.
A4: $$ \lim_{h \rightarrow 0} \frac{f(\tilde{x}_1, \tilde{x}_2+h, \tilde{x}_3 + h) - f(\tilde{x}) }{h} $$ exists.
Q2: Let $f: \mathbb{R}^2 \rightarrow \mathbb{R}$ be given by $$ f(x_1, x_2) = x_1 \cdot x_2 $$ What is $\frac{\partial f}{ \partial x_2}(0,1)$?
A1: $0$
A2: $1$
A3: $2$
A4: $3$
Q3: Let $f: \mathbb{R}^2 \rightarrow \mathbb{R}$ be given by $$ f(x_1, x_2) = x_1^2 \cdot x_2 $$ What is $\frac{\partial f}{ \partial x_1}(\tilde{x})$?
A1: $2 \tilde{x}_1 \tilde{x}_2$
A2: $2 x_1 \tilde{x}_2$
A3: $2 x_1 x_2$
A4: $2 \tilde{x}_1$