-
Title: Examples of Continuous Functions
-
Series: Multivariable Calculus
-
YouTube-Title: Multivariable Calculus 3 | Examples of Continuous Functions
-
Bright video: https://youtu.be/KkZFMklbiu0
-
Dark video: https://youtu.be/xopJmjXvicc
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Python file: Download Python file
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: mc03_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Is a function $f: \mathbb{Z} \rightarrow \mathbb{R}^2$ continuous?
A1: Yes, always!
A2: No, never!
A3: There are continuous functions of this form but also functions that are not continuous.
A4: The notion ‘continuous’ does not make sense for such functions.
Q2: Is the function $f: \mathbb{R}^2 \rightarrow \mathbb{R}$ given by $$ f(x_1, x_2) = x_1 \cdot x_2$$ continuous?
A1: Yes!
A2: No!
A3: One needs more information.
Q3: Is the function $f: \mathbb{R}^2 \rightarrow \mathbb{R}$ given by $$ f(x_1, x_2) = \begin{cases} 1 ~~ \text{ if } \binom{x_1}{x_2} = \binom{0}{0} \ 2 ~~ \text{ if } \binom{x_1}{x_2} \neq \binom{0}{0} \end{cases} $$ continuous?
A1: Yes!
A2: No!
A3: One needs more information.
Q4: Is the function $f: \mathbb{R}^2 \rightarrow \mathbb{R}$ given by $$ f(x_1, x_2) = \begin{cases} 0 ~~ \text{ if } \binom{x_1}{x_2} = \binom{0}{0} \ \frac{x_1 x_2}{x_1^2 + x^2_2} ~~ \text{ if } \binom{x_1}{x_2} \neq \binom{0}{0} \end{cases} $$ continuous?
A1: Yes!
A2: No!
A3: One needs more information.