

$$
A = \int_{A}^{A} f(x_{1}, x_{2}) d\lambda^{(2)}(x_{1}, x_{2}) = \int_{A}^{A} f(x_{1}, x_{2}) d(x_{1}, x_{2})
$$

$$
= \int_{A}^{A} f(x) d^{2}x
$$

Do it again! A same in the set of the set of

as a product measure $U \subseteq R^2$

<u>Result:</u> n-dimensional Lebesgue measure on \mathbb{R}^n : $\lambda^{(n)}$: $\mathcal{I}(\mathbb{R}^n) \longrightarrow [0,\infty]$

properties:

•
$$
\lambda^{(n)}(\emptyset) = 0
$$

\n• $\lambda^{(n)}(\bigcup_{j=1}^{\infty} A_j) = \sum_{j=1}^{\infty} \lambda^{(n)}(A_j)$ for $A_j \in \mathcal{L}(\mathbb{R}^n)$, $A_j \cap A_i = \emptyset$ for $i \neq j$

- \cdot $\mathbb{L}(\mathbb{R}^n)$ is larger than the Borel σ -algebra.
- If $A \in \mathcal{L}(\mathbb{R}^n)$ with $\hat{\lambda}^{(n)}(A) = 0$, (A is called null set) then each $B \subseteq A$ satisfies $BE \mathcal{L}(R^n)$.
- $\lambda^{(n)}([0,1) \times [0,1) \times \cdots \times [0,1)) = 1$

$$
\bullet \quad \lambda^{(n)}(x+A) = \lambda^{(n)}(A) \quad \text{for all} \quad x \in \mathbb{R}^n, \ A \in \mathcal{L}(\mathbb{R}^n)
$$

(translation-invariant)

n-dimensional Lebesgue integral:

$$
\int_A f \ d\lambda^{(n)} = \int_A f(x) \ d^nx
$$