

$$A = \int_{A}^{A} f(x_{1}, x_{2}) d\lambda^{(1)}(x_{1}, x_{2}) = \int_{A}^{A} f(x_{1}, x_{2}) d(x_{1}, x_{2})$$
$$= \int_{A}^{A} f(x) d^{1}x$$

Do it again! A3

volume in \mathbb{R}^3 : $\lambda^{(i)}(\mathbf{U}) \cdot \lambda(\mathbf{A}_3) \longrightarrow \lambda^{(j)}$ as a product measure

n-dimensional Lebesgue measure on \mathbb{R}^n : $\lambda^{(n)}$: $\mathfrak{L}(\mathbb{R}^n) \longrightarrow [0,\infty]$ Result: properties:

- $\lambda^{(n)}(\emptyset) = 0$ • $\lambda^{(n)}\left(\bigcup_{j=1}^{\infty}A_{j}\right) = \sum_{i=1}^{\infty}\lambda^{(n)}(A_{j})$ for $A_{j} \in \mathcal{L}(\mathbb{R}^{n})$, $A_{j} \cap A_{i} = \emptyset$ for $i \neq j$
- $\mathcal{L}(\mathbb{R}^{h})$ is larger than the Borel \mathcal{T} -algebra.
- If $A \in \mathcal{L}(\mathbb{R}^n)$ with $\mathcal{N}^{(n)}(A) = 0$, (A is called <u>null set</u>) then each $\mathbb{B} \subseteq A$ satisfies $\mathbb{B} \in \mathcal{L}(\mathbb{R}^n)$.
- $\lambda^{(n)}([0,1] \times [0,1] \times \cdots \times [0,1]) = 1$

•
$$\lambda^{(n)}(x + A) = \lambda^{(n)}(A)$$
 for all $x \in \mathbb{R}^n$, $A \in \mathfrak{L}(\mathbb{R}^n)$

(translation-invariant)

n-dimensional Lebesgue integral:

$$\int_{A} \int f d \lambda^{(n)} = \int_{A} \int f(x) d^{n} x$$