The Bright Side of Mathematics

The following pages cover the whole Mehrdimensionale Integration course of the Bright Side of Mathematics. Please note that the creator lives from generous supporters and would be very happy about a donation. See more here: https://tbsom.de/support

Have fun learning mathematics!

(a) Skizziere die Menge

$$G := \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le 1 \le y, \ y + x^2 \le 3\}$$
.

(b) Berechne das zweidimensionale Integral

$$\int_G x^2 d(x, y)$$

Mehr dimensionale Integration

1. Volument messen

1. 2, 3 oder 4 dimensional

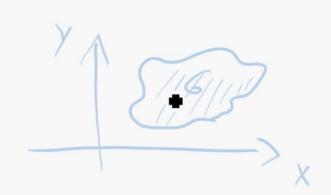
1. A dim: Integration: $\int_{A}^{(x)} f(x) dx = A \quad \text{Flacke}$ 2- dim. Integration: S(x,y) $\int_{A}^{(x)} f(x) dx = A \quad \text{Flacke}$ 2- dim. Integration: S(x,y) $\int_{A}^{(x)} f(x) dx = A \quad \text{Flacke}$ $\int_{A}^{(x)} f(x) dx = A \quad \text{Flacke}$ Note that the following integral and the following

f sleding, down gitt:

$$\int f(x,y) d(x,y) = \int \left(\int f(x,y) dy \right) dx$$

$$\begin{bmatrix} a_{1},b_{1} \end{bmatrix} \times \begin{bmatrix} a_{2},b_{1} \end{bmatrix} = \int \left(\int f(x,y) dy \right) dx$$

$$= \int \left(\int f(x,y) dx \right) dy$$



(a) Skizziere die Menge

$$G := \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le 1 \le y, \ y + x^2 \le 3\}$$
.

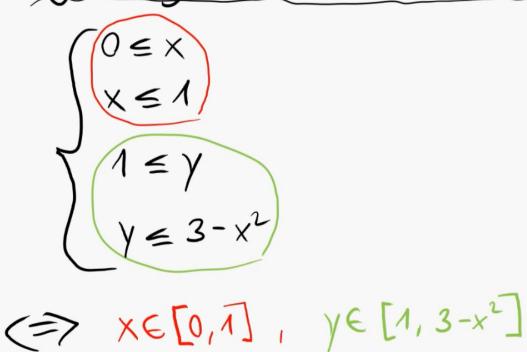
(b) Berechne das zweidimensionale Integral

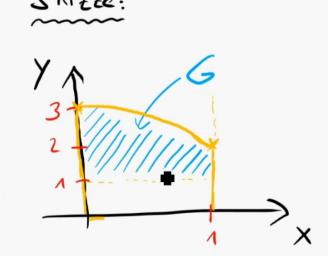
$$\int_G x^2 d(x, y)$$

(a) Skizziere die Menge

$$G := \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le 1 \le y, \ y + x^2 \le 3\}$$
.

Ungleichungen anzeln aufsdreiben:





$$T = \int_G x^2 d(x, y)$$

$$I = \int x^2 d(x,y) = \int x^2 d(x,y)$$

$$[0,1] \times [1,3-x^2]''$$

Fubini
$$= \int_{0}^{1} \left(\int_{1}^{3-x^{2}} x^{2} dy \right) dx = \int_{0}^{1} x^{2} \left(3-x^{2}-1 \right) dx = \frac{7}{15}$$

· Mehrdimensionale Integration

Aufgabe 2

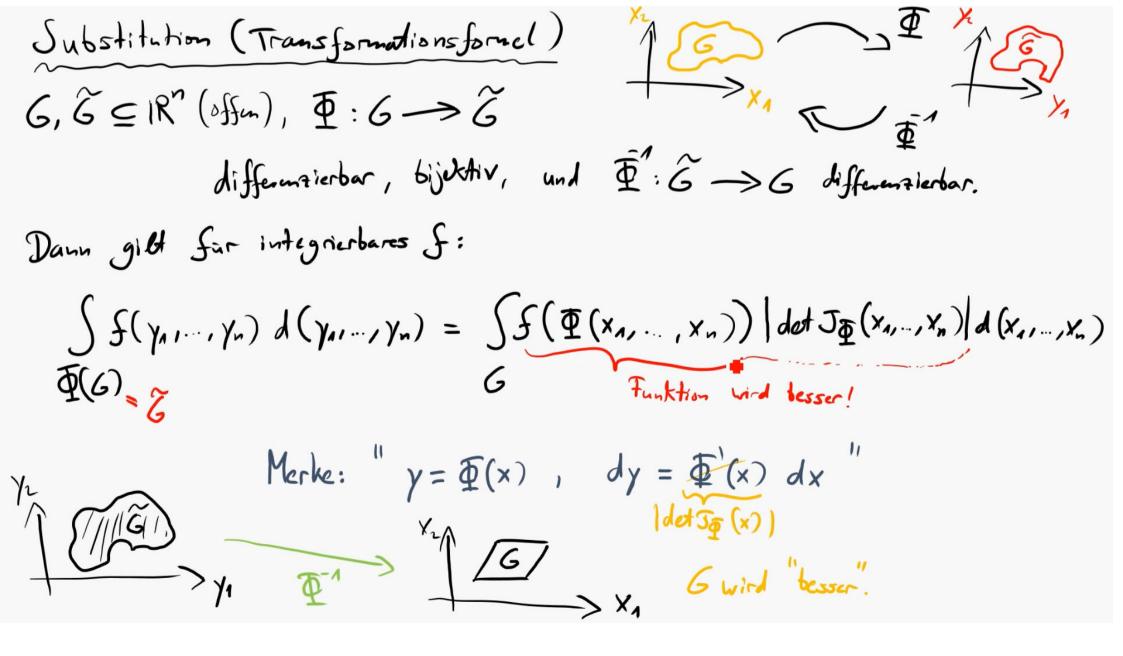
(a) Skizziere die Menge

$$B := \left\{ (x, y) \in \mathbb{R}^2 \mid \frac{1}{2} - x \le \frac{1}{2} \le x + y \le 1 \le 1 + y \right\}.$$

(b) Berechne das zweidimensionale Integral

$$I = \int_{B} \cos\left(\frac{x-y}{x+y}\right) d(x,y)$$

Hinweis: Verwenden Sie die Substitution u = x - y und v = x + y und damit die Transformationsformel.



mehrdimensionale Integration

Aufgabe 2

(a) Skizziere die Menge

$$B := \left\{ (x, y) \in \mathbb{R}^2 \mid \frac{1}{2} - x \le \frac{1}{2} \le x + y \le 1 \le 1 + y \right\}.$$

(b) Berechne das zweidimensionale Integral

$$I = \int_{B} \cos\left(\frac{x-y}{x+y}\right) d(x,y)$$

Hinweis: Verwenden Sie die Substitution u = x - y und v = x + y und damit die Transformationsformel.

(a) Skizziere die Menge

$$B := \left\{ (x,y) \in \mathbb{R}^2 \mid \frac{1}{2} - x \le \frac{1}{2} \le x + y \le 1 \le 1 + y \right\}.$$

$$= \left\{ (x,y) \mid \frac{1}{2} - x \le \frac{1}{2} \le x + y \le 1 \le 1 + y \right\}.$$

$$X := \left\{ (x,y) \mid \frac{1}{2} - x \le \frac{1}{2} \le x + y \le 1 \le 1 + y \right\}.$$

$$X := \left\{ (x,y) \mid \frac{1}{2} - x \le \frac{1}{2} \le x + y \le 1 \le 1 + y \right\}.$$

$$X := \left\{ (x,y) \mid \frac{1}{2} - x \le \frac{1}{2} \le x + y \le 1 \le 1 + y \right\}.$$

$$X := \left\{ (x,y) \mid \frac{1}{2} - x \le \frac{1}{2} \le x + y \le 1 \le 1 + y \right\}.$$

$$X := \left\{ (x,y) \mid \frac{1}{2} - x \le \frac{1}{2} \le x + y \le 1 \le 1 + y \right\}.$$

mehrdimensionale Integration

Aufgabe 2

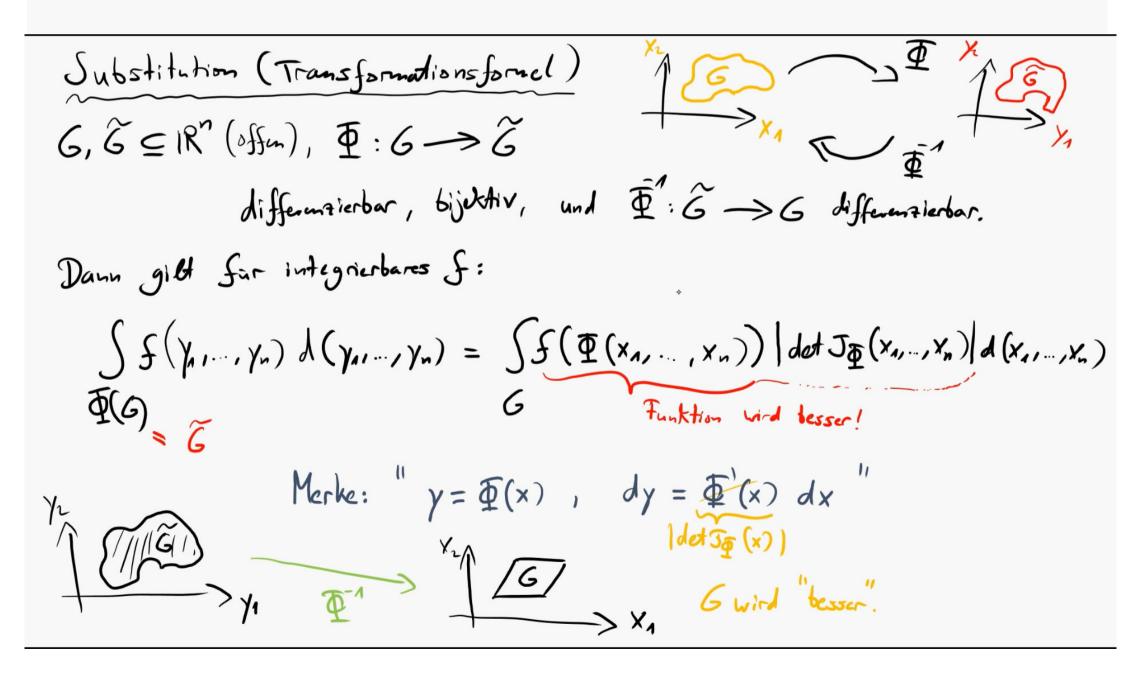
(a) Skizziere die Menge

$$B := \left\{ (x, y) \in \mathbb{R}^2 \mid \frac{1}{2} - x \le \frac{1}{2} \le x + y \le 1 \le 1 + y \right\}.$$

(b) Berechne das zweidimensionale Integral

$$I = \int_{B} \cos\left(\frac{x-y}{x+y}\right) d(x,y)$$

Hinweis: Verwenden Sie die Substitution u = x - y und v = x + y und damit die Transformationsformel.



$$I = \int_{\mathcal{B}} \cos\left(\frac{x-y}{x+y}\right) d(x,y)$$

Hinweis: Verwenden Sie die Substitution u = x - y und v = x + y und damit die

Transformations formel.

$$B = G$$

$$\Phi^{-1}(x,y) = \begin{pmatrix} x - y \\ x + y \end{pmatrix} = \begin{pmatrix} x - y \\ x +$$

Mehrdimensionale Integration

Aufgabe 3

(a) Skizziere die Menge

$$G := \{(x, y) \in \mathbb{R}^2 \mid 0 \le y \le x^2, \ 0 \le x \le 2\}$$
.

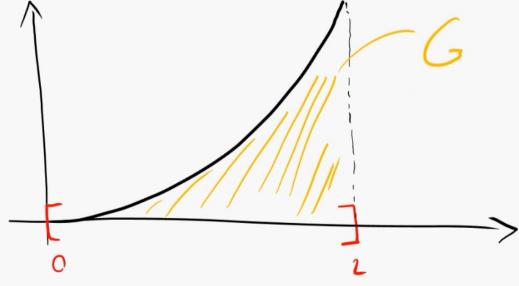
(b) Berechne das zweidimensionale Integral

$$\int_G (x^2 + y^2) d(x, y) .$$

(a) Skizziere die Menge

$$G := \{(x, y) \in \mathbb{R}^2 \mid 0 \le y \le x^2, \ 0 \le x \le 2\}$$
.

$$= \left\{ (x, y) \mid x \in [0, 2], y \in [0, x^2] \right\}$$



$$\underline{T} = \int_{G} (x^{2} + y^{2}) d(x, y) .$$

$$\underline{T} = \int_{G} (x^{2} + y^{2}) d(x, y) .$$

$$\underline{T} = \int_{G} (x^{2} + y^{2}) d(x, y) .$$

$$\underline{T} = \int_{G} (x^{2} + y^{2}) d(x, y) .$$

$$\underline{T} = \int_{G} (x^{2} + y^{2}) d(x, y) .$$

$$\underline{T} = \int_{G} (x^{2} + y^{2}) d(x, y) .$$

$$\underline{T} = \int_{G} (x^{2} + y^{2}) d(x, y) .$$

$$\underline{T} = \int_{G} (x^{2} + y^{2}) d(x, y) .$$

$$\underline{T} = \int_{G} (x^{2} + y^{2}) d(x, y) .$$

$$\underline{T} = \int_{G} (x^{2} + y^{2}) d(x, y) .$$

$$\underline{T} = \int_{G} (x^{2} + y^{2}) d(x, y) .$$

$$\underline{T} = \int_{G} (x^{2} + y^{2}) d(x, y) .$$

$$\underline{T} = \int_{G} (x^{2} + y^{2}) d(x, y) .$$

$$\underline{T} = \int_{G} (x^{2} + y^{2}) d(x, y) .$$

$$\underline{T} = \int_{G} (x^{2} + y^{2}) d(x, y) .$$

$$\underline{T} = \int_{G} (x^{2} + y^{2}) d(x, y) .$$

$$\underline{T} = \int_{G} (x^{2} + y^{2}) d(x, y) .$$

$$\underline{T} = \int_{G} (x^{2} + y^{2}) d(x, y) .$$

$$\underline{T} = \int_{G} (x^{2} + y^{2}) d(x, y) .$$

$$\underline{T} = \int_{G} (x^{2} + y^{2}) d(x, y) .$$

$$\underline{T} = \int_{G} (x^{2} + y^{2}) d(x, y) .$$

$$\underline{T} = \int_{G} (x^{2} + y^{2}) d(x, y) .$$

$$\underline{T} = \int_{G} (x^{2} + y^{2}) d(x, y) .$$

$$\underline{T} = \int_{G} (x^{2} + y^{2}) d(x, y) .$$

$$\underline{T} = \int_{G} (x^{2} + y^{2}) d(x, y) .$$

$$\underline{T} = \int_{G} (x^{2} + y^{2}) d(x, y) .$$

$$\underline{T} = \int_{G} (x^{2} + y^{2}) d(x, y) .$$

$$\underline{T} = \int_{G} (x^{2} + y^{2}) d(x, y) .$$

$$\underline{T} = \int_{G} (x^{2} + y^{2}) d(x, y) .$$

$$\underline{T} = \int_{G} (x^{2} + y^{2}) d(x, y) .$$

$$\underline{T} = \int_{G} (x^{2} + y^{2}) d(x, y) .$$

$$\underline{T} = \int_{G} (x^{2} + y^{2}) d(x, y) .$$

$$\underline{T} = \int_{G} (x^{2} + y^{2}) d(x, y) .$$

$$\underline{T} = \int_{G} (x^{2} + y^{2}) d(x, y) .$$

$$\underline{T} = \int_{G} (x^{2} + y^{2}) d(x, y) .$$

$$\underline{T} = \int_{G} (x^{2} + y^{2}) d(x, y) .$$

$$\underline{T} = \int_{G} (x^{2} + y^{2}) d(x, y) .$$

$$\underline{T} = \int_{G} (x^{2} + y^{2}) d(x, y) .$$

$$\underline{T} = \int_{G} (x^{2} + y^{2}) d(x, y) .$$

$$\underline{T} = \int_{G} (x^{2} + y^{2}) d(x, y) .$$

$$\underline{T} = \int_{G} (x^{2} + y^{2}) d(x, y) .$$

$$\underline{T} = \int_{G} (x^{2} + y^{2}) d(x, y) .$$

$$\underline{T} = \int_{G} (x^{2} + y^{2}) d(x, y) .$$

$$\underline{T} = \int_{G} (x^{2} + y^{2}) d(x, y) .$$

$$\underline{T} = \int_{G} (x^{2} + y^{2}) d(x, y) .$$

$$\underline{T} = \int_{G} (x^{2} + y^{2}) d(x, y) .$$

$$\underline{T} = \int_{G} (x^{2} + y^{2}) d(x, y) .$$

$$\underline{T} = \int_{G} (x^{2} + y^{2}) d(x, y) .$$

$$\underline{T}$$

mehrdimensionale Integration (Satz v. Fubini)

(a) Skizziere die Menge

$$B := \{(x, y) \in \mathbb{R}^2 \mid 1 \le x^2 + 4y^2, \ x^2 + y^2 \le 1\}$$
.

(b) Berechne das zweidimensionale Integral

$$\mathbf{T} = \int_{B} (|x| + |y|) d(x, y)$$

mit Hilfe des Satzes von Fubini auf zwei verschiedene Weisen.

$$B := \left\{ (x,y) \in \mathbb{R}^2 \mid 1 \leq x^2 + \underline{4}y^2, \ x^2 + y^2 \leq 1 \right\}.$$

$$T = \int_{B} (|x| + |y|) \, d(x,y)$$

$$\left(y^* \leq \sqrt{1 - x^2} \right)$$

$$T = \int_{B} (|x| + |y|) \, d(x,y)$$

$$T = \left\{ (x,y) \mid x \in [0,1], \ x \in [\sqrt{1 - 4y^2}, \sqrt{1 - y^2}] \right\}$$

$$T = \left\{ (x,y) \mid y \in [0,1], \ x \in [\sqrt{1 - 4y^2}, \sqrt{1 - y^2}] \right\}$$

$$I = \int (|x| + |y|) d(x,y) = 4 \cdot \int (|x| + |y|) d(x,y)$$

$$F \times \text{and } y \ge 0$$

$$= 4 \cdot \int (x + y) d(x,y) = 4 \cdot \int (\int (x + y)) dy dy dx$$

$$= 4 \cdot \int_{0}^{1} \left[x \cdot y + \frac{1}{2} y^{2} \right]_{y = \frac{1}{2} \sqrt{1 - x^{2}}}^{y = \sqrt{1 - x^{2}}} dx$$

$$= 4 \cdot \int_{0}^{1} \left[x \sqrt{1 - x^{2}} + \frac{1}{2} (1 - x^{2}) - x \cdot \frac{1}{2} \sqrt{1 - x^{2}} - \frac{1}{2} \cdot \frac{1}{4} (1 - x^{2}) \right] dx$$

$$= 4 \cdot \frac{5}{12}$$

$$I = \int (|x| + |y|) d(x,y) = 4 \int (x+y) d(x,y)$$

$$= 4 \cdot \int_{0}^{1} \left(\int (x+y) dx \right) dy$$

$$= 4 \cdot \int_{0}^{1} \left[\int (x+y) dx \right] dy$$

$$= 4 \cdot \int_{0}^{1} \left[\int (x+y) dx \right] dy$$

$$= 4 \cdot \int_{0}^{1} \left[\int (x+y) dx \right] dy$$

$$= 4 \cdot \int_{0}^{1} \left[\int (x+y) dx \right] dy$$

mehrdimensionale Integration

Aufgabe 5

(a) Skizziere die Menge

$$B := \{(x, y) \in \mathbb{R}^2 \mid 1 \le x^2 + 4y^2, \ x^2 + y^2 \le 1\}$$
.

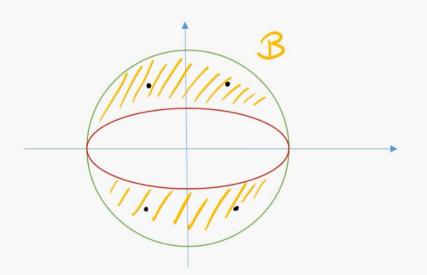
(b) Berechne das zweidimensionale Integral

$$\int_{B} xy \, d(x,y)$$

mit Hilfe von Symmetrieargumenten.

(a) Skizziere die Menge

$$B:=\{(x,y)\in\mathbb{R}^2\mid 1\leq x^2+4y^2,\ x^2+y^2\leq 1\}\;.$$

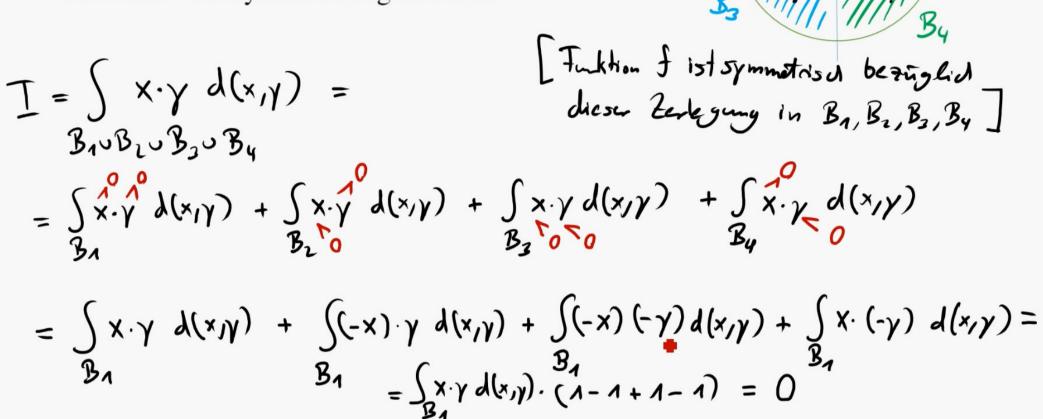


$$\int (x, \gamma) = x \cdot \gamma$$

Funtaion ist "symmetrisch" bis auf Vorzeiden.

$$T = \int_B xy \, d(x,y)$$

mit Hilfe von Symmetrieargumenten.



Aufgabe 6 Transformations formel

(a) Skizzieren Sie einen viertelkreisförmigen Tisch und berechnen Sie die Masse

$$M = \int_{\text{Tisch}} 1 \, d(x, y) \;,$$

indem Sie auf Polarkoordinaten transformieren.

(b) Berechne Sie nun ebenfalls den Schwerpunkt des Tisches, d. h.

$$s_x = \frac{1}{M} \int_{\mathsf{Tisch}} x \, d(x, y) \,, \quad \mathsf{und} \quad s_y = \frac{1}{M} \int_{\mathsf{Tisch}} y \, d(x, y) \,.$$

(c) Wie groß ist das Trägheitsmoment des Tisches, wenn dieser um seine Ecke rotiert wird? (Das heißt, die Drehachse befindet sich im Kreismittelpunkt senkrecht zur Tischebene.)

$$\int f(r, \varphi) = \left(\frac{r \cos \varphi}{r \sin \varphi} \right)^{-1}$$

$$\int f(r, \varphi) = \left(\frac{r \cos \varphi}{r \sin \varphi} \right)^{-1}$$

$$\int f(r, \varphi) = \int f(\overline{f}(r, \varphi)) \cdot \left| det \int \overline{f}(r, \varphi) \right| d(r, \varphi)$$

$$\int f(r, \varphi) = \left(\frac{r \cos \varphi}{r \sin \varphi} \right) \cdot \det \int \overline{f}(r, \varphi) = r \cos \varphi$$

$$\int \overline{f}(r, \varphi) = \left(\frac{r \cos \varphi}{r \cos \varphi} \right) \cdot \det \int \overline{f}(r, \varphi) = r \cos \varphi$$

$$\int \overline{f}(r, \varphi) = \left(\frac{r \cos \varphi}{r \cos \varphi} \right) \cdot \det \int \overline{f}(r, \varphi) = r \cos \varphi$$

$$\int \overline{f}(r, \varphi) = \left(\frac{r \cos \varphi}{r \cos \varphi} \right) \cdot \det \int \overline{f}(r, \varphi) = r \cos \varphi$$

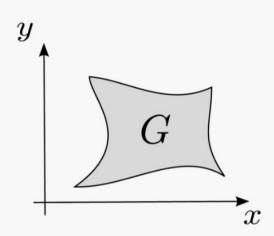
$$\int \overline{f}(r, \varphi) = \left(\frac{r \cos \varphi}{r \cos \varphi} \right) \cdot \det \int \overline{f}(r, \varphi) = r \cos \varphi$$

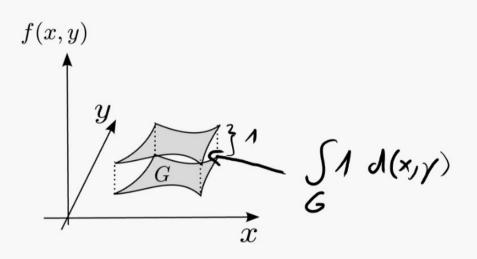
$$\int \overline{f}(r, \varphi) = \left(\frac{r \cos \varphi}{r \cos \varphi} \right) \cdot \det \int \overline{f}(r, \varphi) = r \cos \varphi$$

$$\int \overline{f}(r, \varphi) = \left(\frac{r \cos \varphi}{r \cos \varphi} \right) \cdot \det \int \overline{f}(r, \varphi) = r \cos \varphi$$

$$\int \overline{f}(r, \varphi) = \left(\frac{r \cos \varphi}{r \cos \varphi} \right) \cdot \det \int \overline{f}(r, \varphi) = r \cos \varphi$$

Mehrdimensionale Integration um Flachen oder Volumina en berechnen.





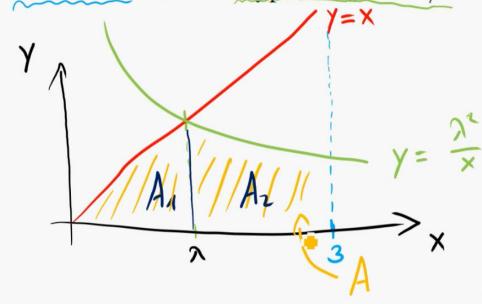
Fladerinhald (6) = \int 1 d(x,y)

Hilfmittel. - Transformations formed (Kugeltvordination)
- Salz v. Fubini

Aufgabe 7 Flächen berednung mit mehrdim. Integration

Skizzieren Sie die folgenden Fläche und berechnen Sie die Flächeninhalt mit Hilfe eines zweidimensionalen Integrals:

Die Fläche im 1. Quadraten $(x, y \ge 0)$ zwischen den Geraden y = x und x = 3 > 0 und der Hyperbel $y = \lambda^2/x$ mit $0 < \lambda < 3$.



Glaidsotten far den Schnittyndt:

$$X = \frac{\lambda^2}{x}$$

$$= \frac{\lambda^2}{x}$$

$$A = A_{1} + A_{2} = \int_{A_{1}} A(x,y) + \int_{A_{2}} d(x,y)$$

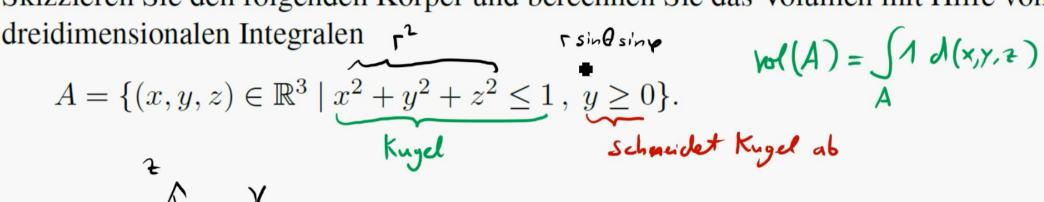
$$= \int_{0}^{3} \left(\int_{0}^{x} A \, dy \right) dx + \int_{3}^{3} \left(\int_{0}^{3} A \, dy \right) dx$$

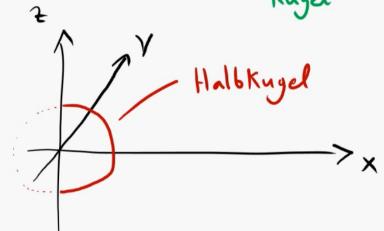
$$= \int_{0}^{3} x \, dx + \int_{3}^{3} \frac{x^{2}}{x} \, dx = \frac{1}{2} x^{2} + x^{2} \left[\ln|x| \right]_{3}^{3}$$

$$= x^{2} \left[\int_{1}^{3} + \ln\left(\frac{3}{2}\right) \right]$$

Volumen beredning mit mehrdim. Integralen Aufgabe 8

Skizzieren Sie den folgenden Körper und berechnen Sie das Volumen mit Hilfe von





Transformations formel:

$$\int f(x,y,z) d(x,y,z) = \int f(\Phi(r,p,\theta)) \left[\det J_{\Phi}(r,p,\theta) \right] d(r,p,\theta)$$
Therefore the Kngelton-direction

The state of the s

$$\mathbf{B} = \mathbf{\bar{\Phi}}(\mathbf{A}) = \left\{ (\mathbf{r}, \boldsymbol{\varphi}, \boldsymbol{\theta}) \in \mathbb{R}^3 \mid \mathbf{r} \in [0, \infty), \, \boldsymbol{\varphi} \in [0, 2\pi], \, \boldsymbol{\theta} \in [0, \pi], \right.$$

$$\mathbf{r} \in \mathbf{A}, \quad \mathbf{r} \sin \boldsymbol{\theta} \sin \boldsymbol{\varphi} \geq 0 \quad \left. \right\}$$

$$B = \{ (1, \varphi, \theta) \in \mathbb{R}^3 \mid \Gamma \in [0, \Lambda], \varphi \in [0, 2\pi], \theta \in [0, \pi], \Gamma \text{ sin } \theta \text{ sin } \varphi \geq 0 \}$$

$$= \{ (\tau, \varphi, \theta) \in \mathbb{R}^3 \mid \Gamma \in [0, \Lambda], \varphi \in [0, \pi], \theta \in [0, \pi] \}$$

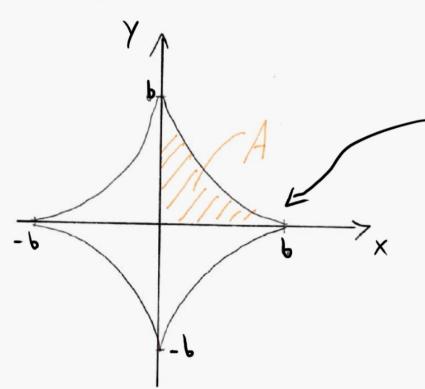
$$\det J_{\overline{\varphi}}(\tau, \varphi, \theta) = \Gamma^2 \sin \theta \qquad \text{(merken, nadrednen!)}$$

$$\operatorname{vol}(A) = \int_{A} A d(x, y, z) = \int_{B} A |\Gamma^2 \sin \theta| d(\tau, \varphi, \theta)$$

$$= \int_{A} \int_$$

Skizzieren Sie die Astroide beschrieben durch $|x|^{2/3} + |y|^{2/3} = a > 0$. Berechnen Sie den eingeschlossenen Flächeninhalt mit Hilfe von neuen Koordinaten $x = \rho \cos^3(\theta)$





$$a = b^{2/3}$$
, $b := a^{3/2}$

Stern Kurre hat Parametristering:

$$\theta \mapsto \begin{pmatrix} 6\cos^3\theta \\ \sin^3\theta \end{pmatrix}$$

None Koordinatum.
$$\Phi(g,\theta) = (g \cos^2 \theta) = x$$
 $g \sin^2 \theta) = y$

Tomsforthisms formal: $\int A A(x,y) = \int A \cdot |dd J_{\Phi}(g,\theta)| d(g,\theta)$

A = $\Phi(g)$

B

Jacobi - Determinante: $\cos^2 \theta$
 $\sin^2 \theta \cos^2 \theta (-\sin \theta)$
 $= \cos^4 \theta \sin^2 \theta \cdot 3g + \cos^2 \theta \sin^4 \theta \cdot 3g = 3g \cos^2 \theta \sin^2 \theta (\cos^2 \theta + \sin^2 \theta)$
 $= 3g (\cos \theta \sin \theta)^2 = 3g \cdot \frac{1}{4} \sin^4 (2\theta) = \frac{3}{4}g \cdot \frac{1}{4} (1 - \cos(4\theta))$
 $\int \cos(2x) = \cos^2(x) - \sin^2(x) = 1 - 2\sin^2 x \int \frac{3}{4}g (1 - \cos(4\theta))$

$$\frac{\sqrt{1}(A) = B}{\sqrt{2}(A)} = \begin{cases} (g,\theta) & | g \in [0, 6], \theta \in [0, \frac{\pi}{2}] \end{cases}$$

$$\frac{\sqrt{1}(A) = B}{\sqrt{2}(A)} = \begin{cases} (g,\theta) & | g \in [0, 6], \theta \in [0, \frac{\pi}{2}] \end{cases}$$

$$\frac{\sqrt{1}(A) = B}{\sqrt{2}(A)} = \begin{cases} (g,\theta) & | g \in [0, 6], \theta \in [0, \frac{\pi}{2}] \end{cases}$$

$$\frac{\sqrt{1}(A) = B}{\sqrt{2}(A)} = \begin{cases} (g,\theta) & | g \in [0, 6], \theta \in [0, \frac{\pi}{2}] \end{cases}$$

$$\frac{\sqrt{1}(A) = B}{\sqrt{2}(A)} = \begin{cases} (g,\theta) & | g \in [0, 6], \theta \in [0, \frac{\pi}{2}] \end{cases}$$

$$\frac{\sqrt{1}(A) = B}{\sqrt{2}(A)} = \begin{cases} (g,\theta) & | g \in [0, 6], \theta \in [0, \frac{\pi}{2}] \end{cases}$$

$$\frac{\sqrt{1}(A) = B}{\sqrt{2}(A)} = \begin{cases} (g,\theta) & | g \in [0, 6], \theta \in [0, \frac{\pi}{2}] \end{cases}$$

$$\frac{\sqrt{1}(A) = B}{\sqrt{2}(A)} = \begin{cases} (g,\theta) & | g \in [0, 6], \theta \in [0, \frac{\pi}{2}] \end{cases}$$

$$\frac{\sqrt{1}(A) = B}{\sqrt{2}(A)} = \begin{cases} (g,\theta) & | g \in [0, 6], \theta \in [0, \frac{\pi}{2}] \end{cases}$$

$$\frac{\sqrt{1}(A) = B}{\sqrt{2}(A)} = \begin{cases} (g,\theta) & | g \in [0, 6], \theta \in [0, \frac{\pi}{2}] \end{cases}$$

$$\frac{\sqrt{1}(A) = B}{\sqrt{2}(A)} = \begin{cases} (g,\theta) & | g \in [0, 6], \theta \in [0, \frac{\pi}{2}] \end{cases}$$

$$\frac{\sqrt{1}(A) = B}{\sqrt{2}(A)} = \begin{cases} (g,\theta) & | g \in [0, 6], \theta \in [0, \frac{\pi}{2}] \end{cases}$$

$$\frac{\sqrt{1}(A) = B}{\sqrt{2}(A)} = \begin{cases} (g,\theta) & | g \in [0, 6], \theta \in [0, \frac{\pi}{2}] \end{cases}$$

$$\frac{\sqrt{1}(A) = B}{\sqrt{1}(A)} = \begin{cases} (g,\theta) & | g \in [0, 6], \theta \in [0, \frac{\pi}{2}] \end{cases}$$

$$\frac{\sqrt{1}(A) = B}{\sqrt{1}(A)} = \begin{cases} (g,\theta) & | g \in [0, 6], \theta \in [0, \frac{\pi}{2}] \end{cases}$$

$$\frac{\sqrt{1}(A) = B}{\sqrt{1}(A)} = \begin{cases} (g,\theta) & | g \in [0, 6], \theta \in [0, \frac{\pi}{2}] \end{cases}$$

$$\frac{\sqrt{1}(A) = B}{\sqrt{1}(A)} = \begin{cases} (g,\theta) & | g \in [0, 6], \theta \in [0, \frac{\pi}{2}] \end{cases}$$

$$\frac{\sqrt{1}(A) = B}{\sqrt{1}(A)} = \begin{cases} (g,\theta) & | g \in [0, 6], \theta \in [0, \frac{\pi}{2}] \end{cases}$$

$$\frac{\sqrt{1}(A) = B}{\sqrt{1}(A)} = \begin{cases} (g,\theta) & | g \in [0, 6], \theta \in [0, \frac{\pi}{2}] \end{cases}$$

$$\frac{\sqrt{1}(A) = B}{\sqrt{1}(A)} = \begin{cases} (g,\theta) & | g \in [0, 6], \theta \in [0, \frac{\pi}{2}] \end{cases}$$

$$\frac{\sqrt{1}(A) = B}{\sqrt{1}(A)} = \begin{cases} (g,\theta) & | g \in [0, 6], \theta \in [$$