Manifolds - Part 10

- (1) Hausdorff space
- (2) second-countable
- (3) locally Euclidean of dimension h

<u>Definition</u>: A collection of charts $(U_i, h_i)_{i \in I}$ is called an <u>atlas</u> if: $\bigcup_{i \in I} U_i = M$

- Example: (a) (M,T) discrete topological space with countably many points \rightarrow 0-dimensional manifold
 - (b) $M \subseteq \mathbb{R}^n$ open subset, (M,T) $M \subseteq \mathbb{R}^n$ open subset, (M,T) $M \subseteq \mathbb{R}^n$ open subset, $M \subseteq \mathbb{R}^n$ open subset manifold

(c)
$$S^{1} \subseteq \mathbb{R}^{3}$$
, $S^{2} := \left\{ x \in \mathbb{R}^{3} \mid ||x|| = 1 \right\}$

Euclidean norm

2 - dimensional manifold

$$h_{3,-} \begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{pmatrix} \longmapsto \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix}$$

$$h_{3,-} \begin{pmatrix} \chi_1^1 \\ \chi_2^1 \end{pmatrix} \longmapsto \begin{pmatrix} \chi_1^1 \\ \chi_2^1 \\ -\sqrt{1-\|\chi'\|^{2}} \end{pmatrix}$$

 $\left(\bigcup_{i,\pm}, h_{i,\pm} \right)_{i \in \{1,2,3\}}$ is an atlas.

